Vocabulário
Consulte esta página para obter uma lista de termos e conceitos que usaremos ao longo deste curso.
Modelos de Linguagem Grandes (LLMs), Modelos de Linguagem Pré-treinados (PLMs), Modelos de Linguagem (LMs) e modelos fundamentais
Esses termos se referem mais ou menos à mesma coisa: AIs (redes neurais) grandes, que geralmente foram treinados em uma grande quantidade de texto.
Modelos de Linguagem Mascaráveis (MLMs)
Os MLMs são um tipo de modelo NLP, que têm um token especial, geralmente [MASK]
, que é substituído por uma palavra do vocabulário. O modelo então prevê a palavra que foi mascarada. Por exemplo, se a frase é "O cachorro está [MASK] o gato", o modelo prevê "perseguindo" com alta probabilidade.
Rótulos (labels, em inglês)
Digamos que queremos classificar alguns tweets como sendo ofensivos ou não. Se tivermos uma lista de tweets e seu rótulo correspondente (ofensivo ou não-ofensivo), podemos treinar um modelo para classificar se os tweets são ofensivos ou não. Os rótulos são geralmente apenas possibilidades para a tarefa de classificação.
Espaço de Rótulos ou Categorias (Labelspace, em inglês)
Todos os possíveis rótulos para uma determinada tarefa ('ofensivo' e 'não-ofensivo' para o exemplo acima).
Sentiment Analysis
Sentiment analysis is the task of classifying text into positive, negative, or other sentiments.
"Modelo" vs. "IA" vs. "LLM"
Esses termos são usados de forma intercambiável ao longo deste curso, mas eles nem sempre significam a mesma coisa. LLMs são um tipo de IA, como mencionado acima, mas nem todas as IAs são LLMs. Quando mencionamos modelos neste curso, estamos nos referindo a modelos de IA. Portanto, neste curso, você pode considerar os termos "modelo" e "IA" como intercambiáveis.
Aprendizado de Máquina (ML, Machine Learning, em inglês)
ML é um campo de estudo que se concentra em algoritmos que podem aprender com dados. ML é uma subárea da IA.
Verbalizador
No cenário de classificação, verbalizadores são mapeamentos de rótulos para palavras no vocabulário de um modelo de linguagem. Por exemplo, considere realizar a classificação de sentimento com o seguinte prompt:
Tweet: "I amo pão de queijo."
Qual o sentimento desse Tweet? Responda com 'pos' ou 'neg'.
Nesse exemplo o verbalizador estará mapeando os rótulos conceituais de positivo
e negativo
para os tokens pos
and neg
.
Aprendizado por Reforço a partir de Feedback Humano (ARFH)
ARFH é um método para ajustar LLMs de acordo com dados de preferência humana. Em inglês o termo é conhecido como Reinforcement Learning from Human Feedback (RLHF).
Sander Schulhoff
Sander Schulhoff is the Founder of Learn Prompting and an ML Researcher at the University of Maryland. He created the first open-source Prompt Engineering guide, reaching 3M+ people and teaching them to use tools like ChatGPT. Sander also led a team behind Prompt Report, the most comprehensive study of prompting ever done, co-authored with researchers from the University of Maryland, OpenAI, Microsoft, Google, Princeton, Stanford, and other leading institutions. This 76-page survey analyzed 1,500+ academic papers and covered 200+ prompting techniques.
Footnotes
-
Branch, H. J., Cefalu, J. R., McHugh, J., Hujer, L., Bahl, A., del Castillo Iglesias, D., Heichman, R., & Darwishi, R. (2022). Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples. ↩
-
Schick, T., & Schütze, H. (2020). Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference. ↩ ↩2
-
Brown, T. B. (2020). Language models are few-shot learners. arXiv Preprint arXiv:2005.14165. ↩ ↩2 ↩3
-
Wu, T., Terry, M., & Cai, C. J. (2022). Ai chains: Transparent and controllable human-ai interaction by chaining large language model prompts. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 1–22. ↩
-
Schulhoff, S., Ilie, M., Balepur, N., Kahadze, K., Liu, A., Si, C., Li, Y., Gupta, A., Han, H., Schulhoff, S., & others. (2024). The Prompt Report: A Systematic Survey of Prompting Techniques. arXiv Preprint arXiv:2406.06608. ↩ ↩2 ↩3 ↩4 ↩5 ↩6
-
Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., & Singh, S. (2020). Autoprompt: Eliciting knowledge from language models with automatically generated prompts. arXiv Preprint arXiv:2010.15980. ↩
-
Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large Language Models are Zero-Shot Reasoners. ↩
-
Yasunaga, M., Chen, X., Li, Y., Pasupat, P., Leskovec, J., Liang, P., Chi, E. H., & Zhou, D. (2023). Large language models as analogical reasoners. arXiv Preprint arXiv:2310.01714. ↩
-
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., & others. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9. ↩
-
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou, D. (2022). Chain of Thought Prompting Elicits Reasoning in Large Language Models. ↩
-
Yew Ken Chia. (2023). Contrastive Chain-of-Thought Prompting. In arXiv preprint arXiv:1907.11692. ↩ ↩2
-
Tushar Khot. (2023). Decomposed Prompting: A Modular Approach for Solving Complex Tasks. ↩
-
Li, C., Wang, J., Zhang, Y., Zhu, K., Hou, W., Lian, J., Luo, F., Yang, Q., & Xie, X. (2023). Large language models understand and can be enhanced by emotional stimuli. arXiv Preprint arXiv:2307.11760. ↩
-
Fu, Y., Peng, H., Sabharwal, A., Clark, P., & Khot, T. (2022). Complexity-based prompting for multi-step reasoning. The Eleventh International Conference on Learning Representations. ↩
-
Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., & Chi, E. (2022). Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. ↩
-
Lei Wang. (2023). Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models. ↩
-
Zheng, M., Pei, J., & Jurgens, D. (2023). Is “A Helpful Assistant” the Best Role for Large Language Models? A Systematic Evaluation of Social Roles in System Prompts. https://arxiv.org/abs/2311.10054 ↩
-
Zheng, H. S., Mishra, S., Chen, X., Cheng, H.-T., Chi, E. H., Le, Q. V., & Zhou, D. (2023). Take a step back: Evoking reasoning via abstraction in large language models. arXiv Preprint arXiv:2310.06117. ↩
-
Lu, A., Zhang, H., Zhang, Y., Wang, X., & Yang, D. (2023). Bounding the capabilities of large language models in open text generation with prompt constraints. arXiv Preprint arXiv:2302.09185. ↩
-
Zhou, Y., Geng, X., Shen, T., Tao, C., Long, G., Lou, J.-G., & Shen, J. (2023). Thread of thought unraveling chaotic contexts. arXiv Preprint arXiv:2311.08734. ↩
-
Liu, J., Liu, A., Lu, X., Welleck, S., West, P., Bras, R. L., Choi, Y., & Hajishirzi, H. (2021). Generated Knowledge Prompting for Commonsense Reasoning. ↩
-
Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 594–611. ↩
-
Wang, Y., Yao, Q., Kwok, J. T., & Ni, L. M. (2020). Generalizing from a few examples: A survey on few-shot learning. ACM Computing Surveys (Csur), 53(3), 1–34. ↩
-
Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., Callan, J., & Neubig, G. (2023). Pal: Program-aided language models. International Conference on Machine Learning, 10764–10799. ↩
-
Schmidt, D. C., Spencer-Smith, J., Fu, Q., & White, J. (2023). Cataloging prompt patterns to enhance the discipline of prompt engineering. URL: Https://Www. Dre. Vanderbilt. Edu/Undefined̃ Schmidt/PDF/ADA_Europe_Position_Paper. Pdf [Accessed 2023-09-25]. ↩
-
Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., & Ji, H. (2024). Unleashing the Emergent Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration. https://arxiv.org/abs/2307.05300 ↩
-
Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D. (2022). Self-Consistency Improves Chain of Thought Reasoning in Language Models. ↩
-
Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., & Chen, W. (2022). What Makes Good In-Context Examples for GPT-3? Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures. https://doi.org/10.18653/v1/2022.deelio-1.10 ↩