Compete in HackAPrompt 2.0, the world's largest AI Red-Teaming competition!

Check it out →
Bem-Vindo(a)!
😃 Fundamentos
💼 Aplicações Básicas
🧙‍♂️ Intermediário
🤖 Agentes
⚖️ Confiabilidade
🖼️ Prompts para Imagens
🔓 Hackeando Prompts
🔨 Ferramentas
💪 Ajustando prompts
🎲 Aleatórios
📚 Bibliography
Resources
📦 Prompted Products
🛸 Additional Resources
🔥 Hot Topics
✨ Credits
🧙‍♂️ Intermediário🟦 Lidando com Conteúdos Extensos

Lidando com Conteúdos Extensos

🟦 This article is rated medium
Reading Time: 3 minutes
Last updated on August 7, 2024

Sander Schulhoff

Lidar com conteúdo de extensão longa pode ser difícil, pois os modelos têm um limite de contexto. Vamos aprender algumas estratégias para lidar efetivamente com conteúdos extensos.

1. Pré-processamento do Texto

Antes de fornecer o conteúdo de longa extensão a um modelo de linguagem, é útil pré-processar o texto para reduzir seu tamanho e complexidade. Algumas estratégias para pré-processamento incluem:

  • Remover seções ou parágrafos desnecessários que não são relevantes ou contribuem para a mensagem principal. Isso pode ajudar a priorizar o conteúdo mais importante.
  • Resumir o texto extraindo pontos-chave ou usando técnicas de resumos automáticos. Isso pode fornecer uma visão geral concisa das ideias principais.

Essas etapas de pré-processamento podem ajudar a reduzir o tamanho do conteúdo e melhorar a capacidade do modelo de compreender e gerar respostas.

2. Abordagem de Segmentação e Iteração

Em vez de fornecer todo o conteúdo de longa extensão ao modelo de uma vez só, é possível dividi-lo em partes ou seções menores. Essas partes podem ser processadas individualmente, permitindo que o modelo se concentre em uma seção específica de cada vez.

Uma abordagem iterativa pode ser adotada para lidar com conteúdo de longa extensão. O modelo pode gerar respostas para cada parte do texto, e a saída gerada pode ser incorporada como parte da entrada para a próxima parte. Dessa forma, a conversa com o modelo de linguagem pode progredir de maneira passo a passo, gerenciando efetivamente o comprimento da conversa.

managing the length of the conversation.

3. Pós-processamento e Refinamento das Respostas

As respostas iniciais geradas pelo modelo podem ser longas ou conter informações desnecessárias. É importante realizar um pós-processamento nessas respostas para refiná-las e condensá-las.

Algumas técnicas de pós-processamento incluem:

  • Remover informações redundantes ou repetitivas.
  • Extrair as partes mais relevantes da resposta.
  • Reorganizar a resposta para melhorar a clareza e coerência.

Ao refinar as respostas, o conteúdo gerado pode ficar mais conciso e mais fácil de entender.

4. Utilizando assistentes de IA com suporte a contextos mais longos

Embora alguns modelos de linguagem tenham limitações de comprimento de contexto, existem assistentes de IA, como o GPT-4 da OpenAI e o Claude da Anthropic, que suportam conversas mais longas. Esses assistentes podem lidar com conteúdo extenso de forma mais eficaz e fornecer respostas mais precisas sem a necessidade de soluções complicadas.

5. Bibliotecas de Código

Bibliotecas Python, como o Llama Index e o Langchain, podem ser usadas para lidar com conteúdo extenso. Em particular, o GPT Index pode "indexar" o conteúdo em partes menores e, em seguida, realizar uma busca por vetores para encontrar qual parte do conteúdo é mais relevante e usá-la exclusivamente. O Langchain pode realizar resumos recursivos sobre partes do texto, resumindo uma parte e incluindo-a na próxima parte a ser resumida.

Conclusão

Lidar com conteúdo extenso o pode ser desafiador, mas ao empregar essas estratégias, você pode gerenciar e navegar efetivamente pelo conteúdo com a ajuda de modelos de linguagem. Lembre-se de experimentar, iterar e aperfeiçoar sua abordagem para determinar a estratégia mais eficaz para suas necessidades específicas.

Sander Schulhoff

Sander Schulhoff is the CEO of HackAPrompt and Learn Prompting. He created the first Prompt Engineering guide on the internet, two months before ChatGPT was released, which has taught 3 million people how to prompt ChatGPT. He also partnered with OpenAI to run the first AI Red Teaming competition, HackAPrompt, which was 2x larger than the White House's subsequent AI Red Teaming competition. Today, HackAPrompt partners with the Frontier AI labs to produce research that makes their models more secure. Sander's background is in Natural Language Processing and deep reinforcement learning. He recently led the team behind The Prompt Report, the most comprehensive study of prompt engineering ever done. This 76-page survey, co-authored with OpenAI, Microsoft, Google, Princeton, Stanford, and other leading institutions, analyzed 1,500+ academic papers and covered 200+ prompting techniques.