Selamat Datang
πŸ˜ƒDasar
πŸ’Ό Aplikasi Dasar
πŸ§™β€β™‚οΈ Pelajaran Tingkat Menengah
πŸ€– Agen
βš–οΈ Keandalan
πŸ–ΌοΈ Prompt untuk Menghasilkan Gambar
πŸ”“ Prompt Hacking
πŸ”¨ Tooling
πŸ’ͺ Prompt Tuning
🎲 Serba aneka
πŸ“™ Referensi Kosakata
Daftar Pustaka
πŸ“¦ Prompted Products
πŸ›Έ Sumber Daya Tambahan
πŸ”₯ Hot Topics
✨ Credits
πŸ”“ Prompt Hacking🟒 Tindakan Defensif🟒 Pendekatan Lainnya

Pendekatan Lainnya

🟒 This article is rated easy
Reading Time: 1 minute

Last updated on August 7, 2024

Meskipun pendekatan sebelumnya dapat sangat kuat, beberapa pendekatan lain, seperti menggunakan model yang berbeda, termasuk penyetelan yang baik, bimbingan lunak, dan pembatasan panjang, juga dapat efektif.

Menggunakan Model yang Berbeda

Model-model yang lebih modern seperti GPT-4 lebih tangguh terhadap injeksi permintaan. Selain itu, model yang tidak diatur untuk instruksi mungkin sulit dimasukkan promptnya.

Fine Tuning

Memperhalus model adalah pertahanan yang sangat efektif, karena saat waktu inferensi tidak ada rangsangan yang terlibat, kecuali input pengguna. Ini kemungkinan adalah pertahanan yang lebih disukai dalam setiap situasi nilai tinggi, karena sangat kuat. Namun, ini membutuhkan sejumlah besar data dan dapat mahal, itulah mengapa pertahanan ini jarang diterapkan.

Soft Prompting

Soft prompting bisa pula efektif, karena tidak memiliki prompt diskret yang jelas (selain masukan pengguna). Prompt lunak secara efektif membutuhkan penyesuaian yang halus, sehingga memiliki banyak manfaat yang sama, tetapi kemungkinan akan lebih murah. Namun, pengumuman lembut tidak dipelajari dengan baik seperti penyetelan halus, sehingga tidak jelas seberapa efektifnya.

Pembatasan Panjang

Akhirnya, dengan memasukkan batasan panjang pada masukan pengguna atau membatasi panjang percakapan chatbot seperti yang dilakukan Bing dapat mencegah beberapa serangan seperti permintaan gaya DAN yang besar atau serangan virtualisasi masing-masing.

Sander Schulhoff

Sander Schulhoff is the Founder of Learn Prompting and an ML Researcher at the University of Maryland. He created the first open-source Prompt Engineering guide, reaching 3M+ people and teaching them to use tools like ChatGPT. Sander also led a team behind Prompt Report, the most comprehensive study of prompting ever done, co-authored with researchers from the University of Maryland, OpenAI, Microsoft, Google, Princeton, Stanford, and other leading institutions. This 76-page survey analyzed 1,500+ academic papers and covered 200+ prompting techniques.

Footnotes

  1. Goodside, R. (2022). GPT-3 Prompt Injection Defenses. https://twitter.com/goodside/status/1578278974526222336?s=20&t=3UMZB7ntYhwAk3QLpKMAbw ↩

  2. Selvi, J. (2022). Exploring Prompt Injection Attacks. https://research.nccgroup.com/2022/12/05/exploring-prompt-injection-attacks/ ↩

Copyright Β© 2024 Learn Prompting.