Compete in HackAPrompt 2.0, the world's largest AI Red-Teaming competition!

Check it out β†’
Bienvenidos
πŸ˜ƒ BΓ‘sico
πŸ’Ό Aplicaciones bΓ‘sicas
πŸ§™β€β™‚οΈ Intermediate
πŸ€– Agentes
βš–οΈ Reliability
πŸ–ΌοΈ Image Prompting
πŸ”“ Prompt Hacking
πŸ”¨ Tooling
πŸ’ͺ Prompt Tuning
🎲 Miscellaneous
πŸ“š Bibliography
Resources
πŸ“¦ Prompted Products
πŸ›Έ Recursos adicionales
πŸ”₯ Hot Topics
✨ Créditos

Bibliography

Reading Time: 3 minutes
Last updated on August 7, 2024

Sander Schulhoff

The page contains an organized list of all papers used by this course. The papers are organized by topic.

To cite this course, use the provided citation in the Github repository.

πŸ”΅ = Paper directly cited in this course. Other papers have informed my understanding of the topic.

Note: since neither the GPT-3 nor the GPT-3 Instruct paper correspond to davinci models, I attempt not to cite them as such.

Prompt Engineering Strategies

Chain of Thought πŸ”΅

Zero Shot Chain of Thought πŸ”΅

Self Consistency πŸ”΅

What Makes Good In-Context Examples for GPT-3? πŸ”΅

Generated Knowledge πŸ”΅

Rethinking the role of demonstrations πŸ”΅

Scratchpads

Maieutic Prompting

STaR

Least to Most

Reliability

The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning πŸ”΅

Prompting GPT-3 to be reliable

Diverse Prompts πŸ”΅

Calibrate Before Use: Improving Few-Shot Performance of Language Models πŸ”΅

Enhanced Self Consistency

Bias and Toxicity in Zero-Shot CoT πŸ”΅

Constitutional AI: Harmlessness from AI Feedback πŸ”΅

Automated Prompt Engineering

AutoPrompt πŸ”΅

Automatic Prompt Engineer

Models

Language Models

GPT-3 πŸ”΅

GPT-3 Instruct πŸ”΅

PaLM πŸ”΅

BLOOM πŸ”΅

BLOOM+1 (more languages/ 0 shot improvements)

Jurassic 1 πŸ”΅

GPT-J-6B

Roberta

Image Models

Stable Diffusion πŸ”΅

DALLE πŸ”΅

Soft Prompting

Soft Prompting πŸ”΅

Interpretable Discretized Soft Prompts πŸ”΅

Datasets

GSM8K πŸ”΅

HotPotQA πŸ”΅

Fever πŸ”΅

BBQ: A Hand-Built Bias Benchmark for Question Answering πŸ”΅

Image Prompt Engineering

Taxonomy of prompt modifiers

DiffusionDB

The DALLE 2 Prompt Book πŸ”΅

Prompt Engineering for Text-Based Generative Art πŸ”΅

With the right prompt, Stable Diffusion 2.0 can do hands. πŸ”΅

Optimizing Prompts for Text-to-Image Generation

Prompt Engineering IDEs

Prompt IDE πŸ”΅

Prompt Source πŸ”΅

PromptChainer πŸ”΅

PromptMaker πŸ”΅

Tooling

LangChain πŸ”΅

TextBox 2.0: A Text Generation Library with Pre-trained Language Models πŸ”΅

OpenPrompt: An Open-source Framework for Prompt-learning πŸ”΅

GPT Index πŸ”΅

Applied Prompt Engineering

Language Model Cascades

MRKL πŸ”΅

ReAct πŸ”΅

PAL: Program-aided Language Models πŸ”΅

User Interface Design

Design Guidelines for Prompt Engineering Text-to-Image Generative Models

Prompt Injection

Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods πŸ”΅

Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples πŸ”΅

Prompt injection attacks against GPT-3 πŸ”΅

Exploiting GPT-3 prompts with malicious inputs that order the model to ignore its previous directions πŸ”΅

adversarial-prompts πŸ”΅

GPT-3 Prompt Injection Defenses πŸ”΅

Talking to machines: prompt engineering & injection

Exploring Prompt Injection Attacks πŸ”΅

Using GPT-Eliezer against ChatGPT Jailbreaking πŸ”΅

Jailbreaking

Ignore Previous Prompt: Attack Techniques For Language Models

Lessons learned on Language Model Safety and misuse

Toxicity Detection with Generative Prompt-based Inference

New and improved content moderation tooling

OpenAI API πŸ”΅

OpenAI ChatGPT πŸ”΅

ChatGPT 4 Tweet πŸ”΅

Acting Tweet πŸ”΅

Research Tweet πŸ”΅

Pretend Ability Tweet πŸ”΅

Responsibility Tweet πŸ”΅

Lynx Mode Tweet πŸ”΅

Sudo Mode Tweet πŸ”΅

Ignore Previous Prompt πŸ”΅

Surveys

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

PromptPapers

Dataset Generation

Discovering Language Model Behaviors with Model-Written Evaluations

Selective Annotation Makes Language Models Better Few-Shot Learners

Applications

Atlas: Few-shot Learning with Retrieval Augmented Language Models

STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension

Miscl

Prompting Is Programming: A Query Language For Large Language Models

Parallel Context Windows Improve In-Context Learning of Large Language Models

Learning to Perform Complex Tasks through Compositional Fine-Tuning of Language Models

Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks

Making Pre-trained Language Models Better Few-shot Learners

Grounding with search results

How to Prompt? Opportunities and Challenges of Zero- and Few-Shot Learning for Human-AI Interaction in Creative Applications of Generative Models

On Measuring Social Biases in Prompt-Based Multi-Task Learning

Plot Writing From Pre-Trained Language Models πŸ”΅

StereoSet: Measuring stereotypical bias in pretrained language models

Survey of Hallucination in Natural Language Generation

Examples

Wordcraft

PainPoints

Self-Instruct: Aligning Language Model with Self Generated Instructions

From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models

Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference

A Watermark for Large Language Models

Sander Schulhoff

Sander Schulhoff is the CEO of HackAPrompt and Learn Prompting. He created the first Prompt Engineering guide on the internet, two months before ChatGPT was released, which has taught 3 million people how to prompt ChatGPT. He also partnered with OpenAI to run the first AI Red Teaming competition, HackAPrompt, which was 2x larger than the White House's subsequent AI Red Teaming competition. Today, HackAPrompt partners with the Frontier AI labs to produce research that makes their models more secure. Sander's background is in Natural Language Processing and deep reinforcement learning. He recently led the team behind The Prompt Report, the most comprehensive study of prompt engineering ever done. This 76-page survey, co-authored with OpenAI, Microsoft, Google, Princeton, Stanford, and other leading institutions, analyzed 1,500+ academic papers and covered 200+ prompting techniques.

Footnotes

  1. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou, D. (2022). Chain of Thought Prompting Elicits Reasoning in Large Language Models. ↩

  2. Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large Language Models are Zero-Shot Reasoners. ↩

  3. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D. (2022). Self-Consistency Improves Chain of Thought Reasoning in Language Models. ↩

  4. Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., & Chen, W. (2022). What Makes Good In-Context Examples for GPT-3? Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures. https://doi.org/10.18653/v1/2022.deelio-1.10 ↩ ↩2

  5. Liu, J., Liu, A., Lu, X., Welleck, S., West, P., Bras, R. L., Choi, Y., & Hajishirzi, H. (2021). Generated Knowledge Prompting for Commonsense Reasoning. ↩

  6. Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., & Zettlemoyer, L. (2022). Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? ↩

  7. Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma, M., Luan, D., Sutton, C., & Odena, A. (2021). Show Your Work: Scratchpads for Intermediate Computation with Language Models. ↩

  8. Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Bras, R. L., & Choi, Y. (2022). Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations. ↩

  9. Zelikman, E., Wu, Y., Mu, J., & Goodman, N. D. (2022). STaR: Bootstrapping Reasoning With Reasoning. ↩

  10. Zhou, D., SchΓ€rli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., & Chi, E. (2022). Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. ↩

  11. Ye, X., & Durrett, G. (2022). The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning. ↩

  12. Si, C., Gan, Z., Yang, Z., Wang, S., Wang, J., Boyd-Graber, J., & Wang, L. (2022). Prompting GPT-3 To Be Reliable. ↩

  13. Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., & Chen, W. (2022). On the Advance of Making Language Models Better Reasoners. ↩

  14. Zhao, T. Z., Wallace, E., Feng, S., Klein, D., & Singh, S. (2021). Calibrate Before Use: Improving Few-Shot Performance of Language Models. ↩

  15. Mitchell, E., Noh, J. J., Li, S., Armstrong, W. S., Agarwal, A., Liu, P., Finn, C., & Manning, C. D. (2022). Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference. ↩

  16. Shaikh, O., Zhang, H., Held, W., Bernstein, M., & Yang, D. (2022). On Second Thought, Let’s Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning. ↩

  17. Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKinnon, C., Chen, C., Olsson, C., Olah, C., Hernandez, D., Drain, D., Ganguli, D., Li, D., Tran-Johnson, E., Perez, E., … Kaplan, J. (2022). Constitutional AI: Harmlessness from AI Feedback. ↩

  18. Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., & Singh, S. (2020). Autoprompt: Eliciting knowledge from language models with automatically generated prompts. arXiv Preprint arXiv:2010.15980. ↩

  19. Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., & Ba, J. (2022). Large Language Models Are Human-Level Prompt Engineers. ↩

  20. Brown, T. B. (2020). Language models are few-shot learners. arXiv Preprint arXiv:2005.14165. ↩

  21. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback. ↩

  22. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., … Fiedel, N. (2022). PaLM: Scaling Language Modeling with Pathways. ↩

  23. Scao, T. L., Fan, A., Akiki, C., Pavlick, E., IliΔ‡, S., Hesslow, D., CastagnΓ©, R., Luccioni, A. S., Yvon, F., GallΓ©, M., Tow, J., Rush, A. M., Biderman, S., Webson, A., Ammanamanchi, P. S., Wang, T., Sagot, B., Muennighoff, N., del Moral, A. V., … Wolf, T. (2022). BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. ↩

  24. Yong, Z.-X., Schoelkopf, H., Muennighoff, N., Aji, A. F., Adelani, D. I., Almubarak, K., Bari, M. S., Sutawika, L., Kasai, J., Baruwa, A., Winata, G. I., Biderman, S., Radev, D., & Nikoulina, V. (2022). BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting. ↩

  25. Lieber, O., Sharir, O., Lentz, B., & Shoham, Y. (2021). Jurassic-1: Technical Details and Evaluation, White paper, AI21 Labs, 2021. URL: Https://Uploads-Ssl. Webflow. Com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_ Tech_paper. Pdf. ↩

  26. Wang, B., & Komatsuzaki, A. (2021). GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax. https://github.com/kingoflolz/mesh-transformer-jax ↩

  27. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv Preprint arXiv:1907.11692. ↩

  28. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2021). High-Resolution Image Synthesis with Latent Diffusion Models. ↩

  29. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents. ↩

  30. Lester, B., Al-Rfou, R., & Constant, N. (2021). The Power of Scale for Parameter-Efficient Prompt Tuning. ↩

  31. Khashabi, D., Lyu, S., Min, S., Qin, L., Richardson, K., Welleck, S., Hajishirzi, H., Khot, T., Sabharwal, A., Singh, S., & Choi, Y. (2021). Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts. ↩

  32. Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., & Schulman, J. (2021). Training Verifiers to Solve Math Word Problems. ↩

  33. Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov, R., & Manning, C. D. (2018). HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering. ↩

  34. Thorne, J., Vlachos, A., Christodoulopoulos, C., & Mittal, A. (2018). FEVER: a large-scale dataset for Fact Extraction and VERification. ↩

  35. Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P. M., & Bowman, S. R. (2021). BBQ: A Hand-Built Bias Benchmark for Question Answering. ↩

  36. Oppenlaender, J. (2022). A Taxonomy of Prompt Modifiers for Text-To-Image Generation. ↩

  37. Wang, Z. J., Montoya, E., Munechika, D., Yang, H., Hoover, B., & Chau, D. H. (2022). DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models. ↩

  38. Parsons, G. (2022). The DALLE 2 Prompt Book. https://dallery.gallery/the-dalle-2-prompt-book/ ↩

  39. Oppenlaender, J. (2022). Prompt Engineering for Text-Based Generative Art. ↩

  40. Blake. (2022). With the right prompt, Stable Diffusion 2.0 can do hands. https://www.reddit.com/r/StableDiffusion/comments/z7salo/with_the_right_prompt_stable_diffusion_20_can_do/ ↩

  41. Hao, Y., Chi, Z., Dong, L., & Wei, F. (2022). Optimizing Prompts for Text-to-Image Generation. ↩

  42. Strobelt, H., Webson, A., Sanh, V., Hoover, B., Beyer, J., Pfister, H., & Rush, A. M. (2022). Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation with Large Language Models. arXiv. https://doi.org/10.48550/ARXIV.2208.07852 ↩

  43. Bach, S. H., Sanh, V., Yong, Z.-X., Webson, A., Raffel, C., Nayak, N. V., Sharma, A., Kim, T., Bari, M. S., Fevry, T., Alyafeai, Z., Dey, M., Santilli, A., Sun, Z., Ben-David, S., Xu, C., Chhablani, G., Wang, H., Fries, J. A., … Rush, A. M. (2022). PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts. ↩

  44. Wu, T., Jiang, E., Donsbach, A., Gray, J., Molina, A., Terry, M., & Cai, C. J. (2022). PromptChainer: Chaining Large Language Model Prompts through Visual Programming. ↩

  45. Jiang, E., Olson, K., Toh, E., Molina, A., Donsbach, A., Terry, M., & Cai, C. J. (2022). PromptMaker: Prompt-Based Prototyping with Large Language Models. Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3491101.3503564 ↩

  46. Chase, H. (2022). LangChain (0.0.66) [Computer software]. https://github.com/hwchase17/langchain ↩

  47. Tang, T., Junyi, L., Chen, Z., Hu, Y., Yu, Z., Dai, W., Dong, Z., Cheng, X., Wang, Y., Zhao, W., Nie, J., & Wen, J.-R. (2022). TextBox 2.0: A Text Generation Library with Pre-trained Language Models. ↩

  48. Ding, N., Hu, S., Zhao, W., Chen, Y., Liu, Z., Zheng, H.-T., & Sun, M. (2021). OpenPrompt: An Open-source Framework for Prompt-learning. arXiv Preprint arXiv:2111.01998. ↩

  49. Liu, J. (2022). GPT Index. https://doi.org/10.5281/zenodo.1234 ↩

  50. Dohan, D., Xu, W., Lewkowycz, A., Austin, J., Bieber, D., Lopes, R. G., Wu, Y., Michalewski, H., Saurous, R. A., Sohl-dickstein, J., Murphy, K., & Sutton, C. (2022). Language Model Cascades. ↩

  51. Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., & Tenenholtz, M. (2022). ↩

  52. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). ↩

  53. Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., Callan, J., & Neubig, G. (2022). ↩

  54. Liu, V., & Chilton, L. B. (2022). Design Guidelines for Prompt Engineering Text-to-Image Generative Models. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3491102.3501825 ↩

  55. Crothers, E., Japkowicz, N., & Viktor, H. (2022). Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods. ↩

  56. Branch, H. J., Cefalu, J. R., McHugh, J., Hujer, L., Bahl, A., del Castillo Iglesias, D., Heichman, R., & Darwishi, R. (2022). Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples. ↩

  57. Willison, S. (2022). Prompt injection attacks against GPT-3. https://simonwillison.net/2022/Sep/12/prompt-injection/ ↩

  58. Goodside, R. (2022). Exploiting GPT-3 prompts with malicious inputs that order the model to ignore its previous directions. https://twitter.com/goodside/status/1569128808308957185 ↩

  59. Chase, H. (2022). adversarial-prompts. https://github.com/hwchase17/adversarial-prompts ↩

  60. Goodside, R. (2022). GPT-3 Prompt Injection Defenses. https://twitter.com/goodside/status/1578278974526222336?s=20&t=3UMZB7ntYhwAk3QLpKMAbw ↩

  61. Mark, C. (2022). Talking to machines: prompt engineering & injection. https://artifact-research.com/artificial-intelligence/talking-to-machines-prompt-engineering-injection/ ↩

  62. Selvi, J. (2022). Exploring Prompt Injection Attacks. https://research.nccgroup.com/2022/12/05/exploring-prompt-injection-attacks/ ↩

  63. Stuart Armstrong, R. G. (2022). Using GPT-Eliezer against ChatGPT Jailbreaking. https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking ↩

  64. Perez, F., & Ribeiro, I. (2022). Ignore Previous Prompt: Attack Techniques For Language Models. arXiv. https://doi.org/10.48550/ARXIV.2211.09527 ↩

  65. Brundage, M. (2022). Lessons learned on Language Model Safety and misuse. In OpenAI. OpenAI. https://openai.com/blog/language-model-safety-and-misuse/ ↩

  66. Wang, Y.-S., & Chang, Y. (2022). Toxicity Detection with Generative Prompt-based Inference. arXiv. https://doi.org/10.48550/ARXIV.2205.12390 ↩

  67. Markov, T. (2022). New and improved content moderation tooling. In OpenAI. OpenAI. https://openai.com/blog/new-and-improved-content-moderation-tooling/ ↩

  68. OpenAI. (2022). https://beta.openai.com/docs/guides/moderation ↩

  69. OpenAI. (2022). https://openai.com/blog/chatgpt/ ↩

  70. Maz, A. (2022). ok I saw a few people jailbreaking safeguards openai put on chatgpt so I had to give it a shot myself. https://twitter.com/alicemazzy/status/1598288519301976064 ↩

  71. Piedrafita, M. (2022). Bypass @OpenAI’s ChatGPT alignment efforts with this one weird trick. https://twitter.com/m1guelpf/status/1598203861294252033 ↩

  72. Parfait, D. (2022). ChatGPT jailbreaking itself. https://twitter.com/haus_cole/status/1598541468058390534 ↩

  73. Soares, N. (2022). Using β€œpretend” on #ChatGPT can do some wild stuff. You can kind of get some insight on the future, alternative universe. https://twitter.com/NeroSoares/status/1608527467265904643 ↩

  74. Moran, N. (2022). I kinda like this one even more! https://twitter.com/NickEMoran/status/1598101579626057728 ↩

  75. Degrave, J. (2022). Building A Virtual Machine inside ChatGPT. Engraved. https://www.engraved.blog/building-a-virtual-machine-inside/ ↩

  76. Sudo. (2022). https://www.sudo.ws/ ↩

  77. Perez, F., & Ribeiro, I. (2022). Ignore Previous Prompt: Attack Techniques For Language Models. arXiv. https://doi.org/10.48550/ARXIV.2211.09527 ↩

  78. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2022). Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Computing Surveys. https://doi.org/10.1145/3560815 ↩

  79. Ding, N., & Hu, S. (2022). PromptPapers. https://github.com/thunlp/PromptPapers ↩

  80. Perez, E., Ringer, S., LukoΕ‘iΕ«tΔ—, K., Nguyen, K., Chen, E., Heiner, S., Pettit, C., Olsson, C., Kundu, S., Kadavath, S., Jones, A., Chen, A., Mann, B., Israel, B., Seethor, B., McKinnon, C., Olah, C., Yan, D., Amodei, D., … Kaplan, J. (2022). Discovering Language Model Behaviors with Model-Written Evaluations. ↩

  81. Su, H., Kasai, J., Wu, C. H., Shi, W., Wang, T., Xin, J., Zhang, R., Ostendorf, M., Zettlemoyer, L., Smith, N. A., & Yu, T. (2022). Selective Annotation Makes Language Models Better Few-Shot Learners. ↩

  82. Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni, F., Schick, T., Dwivedi-Yu, J., Joulin, A., Riedel, S., & Grave, E. (2022). Atlas: Few-shot Learning with Retrieval Augmented Language Models. ↩

  83. Wang, B., Feng, C., Nair, A., Mao, M., Desai, J., Celikyilmaz, A., Li, H., Mehdad, Y., & Radev, D. (2022). STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension. ↩

  84. Beurer-Kellner, L., Fischer, M., & Vechev, M. (2022). Prompting Is Programming: A Query Language For Large Language Models. ↩

  85. Ratner, N., Levine, Y., Belinkov, Y., Ram, O., Abend, O., Karpas, E., Shashua, A., Leyton-Brown, K., & Shoham, Y. (2022). Parallel Context Windows Improve In-Context Learning of Large Language Models. ↩

  86. Bursztyn, V. S., Demeter, D., Downey, D., & Birnbaum, L. (2022). Learning to Perform Complex Tasks through Compositional Fine-Tuning of Language Models. ↩

  87. Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y., Mirzaei, A., Arunkumar, A., Ashok, A., Dhanasekaran, A. S., Naik, A., Stap, D., Pathak, E., Karamanolakis, G., Lai, H. G., Purohit, I., Mondal, I., Anderson, J., Kuznia, K., Doshi, K., Patel, M., … Khashabi, D. (2022). Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks. ↩

  88. Gao, T., Fisch, A., & Chen, D. (2021). Making Pre-trained Language Models Better Few-shot Learners. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). https://doi.org/10.18653/v1/2021.acl-long.295 ↩

  89. LiΓ©vin, V., Hother, C. E., & Winther, O. (2022). Can large language models reason about medical questions? ↩

  90. Dang, H., Mecke, L., Lehmann, F., Goller, S., & Buschek, D. (2022). How to Prompt? Opportunities and Challenges of Zero- and Few-Shot Learning for Human-AI Interaction in Creative Applications of Generative Models. ↩

  91. AkyΓΌrek, A. F., Paik, S., Kocyigit, M. Y., Akbiyik, S., Runyun, Ş. L., & Wijaya, D. (2022). On Measuring Social Biases in Prompt-Based Multi-Task Learning. ↩

  92. Jin, Y., Kadam, V., & Wanvarie, D. (2022). Plot Writing From Pre-Trained Language Models. ↩

  93. Nadeem, M., Bethke, A., & Reddy, S. (2021). StereoSet: Measuring stereotypical bias in pretrained language models. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 5356–5371. https://doi.org/10.18653/v1/2021.acl-long.416 ↩

  94. Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A., & Fung, P. (2022). Survey of Hallucination in Natural Language Generation. ACM Computing Surveys. https://doi.org/10.1145/3571730 ↩

  95. Yuan, A., Coenen, A., Reif, E., & Ippolito, D. (2022). Wordcraft: Story Writing With Large Language Models. 27th International Conference on Intelligent User Interfaces, 841–852. ↩

  96. Fadnavis, S., Dhurandhar, A., Norel, R., Reinen, J. M., Agurto, C., Secchettin, E., Schweiger, V., Perini, G., & Cecchi, G. (2022). PainPoints: A Framework for Language-based Detection of Chronic Pain and Expert-Collaborative Text-Summarization. arXiv Preprint arXiv:2209.09814. ↩

  97. Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., & Hajishirzi, H. (2022). Self-Instruct: Aligning Language Model with Self Generated Instructions. ↩

  98. Guo, J., Li, J., Li, D., Tiong, A. M. H., Li, B., Tao, D., & Hoi, S. C. H. (2022). From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models. ↩

  99. Schick, T., & SchΓΌtze, H. (2020). Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference. ↩

  100. Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I., & Goldstein, T. (2023). A Watermark for Large Language Models. https://arxiv.org/abs/2301.10226 ↩