Bibliography
The page contains an organized list of all papers used by this course. The papers are organized by topic.
To cite this course, use the provided citation in the Github repository.
@software{Schulhoff_Learn_Prompting_2022,
author = {Schulhoff, Sander and Community Contributors},
month = dec,
title = {{Learn Prompting}},
url = {https://github.com/trigaten/Learn_Prompting},
year = {2022}
}
Note: since neither the GPT-3 nor the GPT-3 Instruct paper correspond to davinci models, I attempt not to cite them as such.
AUTOGENERATED BELOW, DO NOT EDITAgents
MRKL1Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., & Tenenholtz, M. (2022).
ReAct2Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022).
PAL3Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., Callan, J., & Neubig, G. (2022).
Auto-GPT4Significant-Gravitas. (2023). https://news.agpt.co/
Baby AGI5Nakajima, Y. (2023). https://github.com/yoheinakajima/babyagi
AgentGPT6Reworkd.ai. (2023). https://github.com/reworkd/AgentGPT
Toolformer7Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda, N., & Scialom, T. (2023).
Automated
AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts8Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., & Singh, S. (2020). Autoprompt: Eliciting knowledge from language models with automatically generated prompts. arXiv Preprint arXiv:2010.15980.
automatic prompt engineer9Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., & Ba, J. (2022). Large Language Models Are Human-Level Prompt Engineers.
Soft Prompting10Lester, B., Al-Rfou, R., & Constant, N. (2021). The Power of Scale for Parameter-Efficient Prompt Tuning.
discretized soft prompting (interpreting)11Khashabi, D., Lyu, S., Min, S., Qin, L., Richardson, K., Welleck, S., Hajishirzi, H., Khot, T., Sabharwal, A., Singh, S., & Choi, Y. (2021). Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts.
Datasets
SCAN dataset (compositional generalization)12Lake, B. M., & Baroni, M. (2018). Generalization without Systematicity: On the Compositional Skills of Sequence-to-Sequence Recurrent Networks. https://doi.org/10.48550/arXiv.1711.00350
GSM8K13Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., & Schulman, J. (2021). Training Verifiers to Solve Math Word Problems.
hotpotQA14Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov, R., & Manning, C. D. (2018). HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering.
multiarith15Roy, S., & Roth, D. (2015). Solving General Arithmetic Word Problems. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 1743–1752. https://doi.org/10.18653/v1/D15-1202
fever dataset16Thorne, J., Vlachos, A., Christodoulopoulos, C., & Mittal, A. (2018). FEVER: a large-scale dataset for Fact Extraction and VERification.
bbq17Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P. M., & Bowman, S. R. (2021). BBQ: A Hand-Built Bias Benchmark for Question Answering.
Detection
Don't ban chatgpt in schools. teach with it.18Roose, K. (2022). Don’t ban chatgpt in schools. teach with it. https://www.nytimes.com/2023/01/12/technology/chatgpt-schools-teachers.html
Schools Shouldn't Ban Access to ChatGPT19Lipman, J., & Distler, R. (2023). Schools Shouldn’t Ban Access to ChatGPT. https://time.com/6246574/schools-shouldnt-ban-access-to-chatgpt/
Certified Neural Network Watermarks with Randomized Smoothing20Bansal, A., yeh Ping-Chiang, Curry, M., Jain, R., Wigington, C., Manjunatha, V., Dickerson, J. P., & Goldstein, T. (2022). Certified Neural Network Watermarks with Randomized Smoothing.
Watermarking Pre-trained Language Models with Backdooring21Gu, C., Huang, C., Zheng, X., Chang, K.-W., & Hsieh, C.-J. (2022). Watermarking Pre-trained Language Models with Backdooring.
GW preparing disciplinary response to AI programs as faculty explore educational use22Noonan, E., & Averill, O. (2023). GW preparing disciplinary response to AI programs as faculty explore educational use. https://www.gwhatchet.com/2023/01/17/gw-preparing-disciplinary-response-to-ai-programs-as-faculty-explore-educational-use/
A Watermark for Large Language Models23Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I., & Goldstein, T. (2023). A Watermark for Large Language Models. https://arxiv.org/abs/2301.10226
DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature24Mitchell, E., Lee, Y., Khazatsky, A., Manning, C., & Finn, C. (2023). DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature. https://doi.org/10.48550/arXiv.2301.11305
Image Prompt Engineering
Prompt Engineering for Text-Based Generative Art25Oppenlaender, J. (2022). Prompt Engineering for Text-Based Generative Art.
The DALLE 2 Prompt Book26Parsons, G. (2022). The DALLE 2 Prompt Book. https://dallery.gallery/the-dalle-2-prompt-book/
With the right prompt, Stable Diffusion 2.0 can do hands.27Blake. (2022). With the right prompt, Stable Diffusion 2.0 can do hands. https://www.reddit.com/r/StableDiffusion/comments/z7salo/with_the_right_prompt_stable_diffusion_20_can_do/
Meta Analysis
How Generative AI Is Changing Creative Work28Davenport, T. H., & Mittal, N. (2022). How Generative AI Is Changing Creative Work. Harvard Business Review. https://hbr.org/2022/11/how-generative-ai-is-changing-creative-work
How AI Will Change the Workplace29Captain, S. (2023). How AI Will Change the Workplace. Wall Street Journal. https://www.wsj.com/articles/how-ai-change-workplace-af2162ee
ChatGPT took their jobs. Now they walk dogs and fix air conditioners.30Verma, P., & Vynck, G. D. (2023). ChatGPT took their jobs. Now they walk dogs and fix air conditioners. Washington Post. https://www.washingtonpost.com/technology/2023/06/02/ai-taking-jobs/
No title31Ford, B. (2023). Bloomberg.Com. https://www.bloomberg.com/news/articles/2023-05-01/ibm-to-pause-hiring-for-back-office-jobs-that-ai-could-kill
Miscl
The Turking Test: Can Language Models Understand Instructions?32Efrat, A., & Levy, O. (2020). The Turking Test: Can Language Models Understand Instructions?
A Taxonomy of Prompt Modifiers for Text-To-Image Generation33Oppenlaender, J. (2022). A Taxonomy of Prompt Modifiers for Text-To-Image Generation.
DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models34Wang, Z. J., Montoya, E., Munechika, D., Yang, H., Hoover, B., & Chau, D. H. (2022). DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models.
Optimizing Prompts for Text-to-Image Generation35Hao, Y., Chi, Z., Dong, L., & Wei, F. (2022). Optimizing Prompts for Text-to-Image Generation.
Language Model Cascades36Dohan, D., Xu, W., Lewkowycz, A., Austin, J., Bieber, D., Lopes, R. G., Wu, Y., Michalewski, H., Saurous, R. A., Sohl-dickstein, J., Murphy, K., & Sutton, C. (2022). Language Model Cascades.
Design Guidelines for Prompt Engineering Text-to-Image Generative Models37Liu, V., & Chilton, L. B. (2022). Design Guidelines for Prompt Engineering Text-to-Image Generative Models. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3491102.3501825
Discovering Language Model Behaviors with Model-Written Evaluations38Perez, E., Ringer, S., Lukošiūtė, K., Nguyen, K., Chen, E., Heiner, S., Pettit, C., Olsson, C., Kundu, S., Kadavath, S., Jones, A., Chen, A., Mann, B., Israel, B., Seethor, B., McKinnon, C., Olah, C., Yan, D., Amodei, D., … Kaplan, J. (2022). Discovering Language Model Behaviors with Model-Written Evaluations.
Selective Annotation Makes Language Models Better Few-Shot Learners39Su, H., Kasai, J., Wu, C. H., Shi, W., Wang, T., Xin, J., Zhang, R., Ostendorf, M., Zettlemoyer, L., Smith, N. A., & Yu, T. (2022). Selective Annotation Makes Language Models Better Few-Shot Learners.
Atlas: Few-shot Learning with Retrieval Augmented Language Models40Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni, F., Schick, T., Dwivedi-Yu, J., Joulin, A., Riedel, S., & Grave, E. (2022). Atlas: Few-shot Learning with Retrieval Augmented Language Models.
STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension41Wang, B., Feng, C., Nair, A., Mao, M., Desai, J., Celikyilmaz, A., Li, H., Mehdad, Y., & Radev, D. (2022). STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension.
Prompting Is Programming: A Query Language For Large Language Models42Beurer-Kellner, L., Fischer, M., & Vechev, M. (2022). Prompting Is Programming: A Query Language For Large Language Models.
Parallel Context Windows Improve In-Context Learning of Large Language Models43Ratner, N., Levine, Y., Belinkov, Y., Ram, O., Abend, O., Karpas, E., Shashua, A., Leyton-Brown, K., & Shoham, Y. (2022). Parallel Context Windows Improve In-Context Learning of Large Language Models.
Learning to Perform Complex Tasks through Compositional Fine-Tuning of Language Models44Bursztyn, V. S., Demeter, D., Downey, D., & Birnbaum, L. (2022). Learning to Perform Complex Tasks through Compositional Fine-Tuning of Language Models.
Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks45Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y., Mirzaei, A., Arunkumar, A., Ashok, A., Dhanasekaran, A. S., Naik, A., Stap, D., Pathak, E., Karamanolakis, G., Lai, H. G., Purohit, I., Mondal, I., Anderson, J., Kuznia, K., Doshi, K., Patel, M., … Khashabi, D. (2022). Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks.
Making Pre-trained Language Models Better Few-shot Learners46Gao, T., Fisch, A., & Chen, D. (2021). Making Pre-trained Language Models Better Few-shot Learners. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). https://doi.org/10.18653/v1/2021.acl-long.295
How to Prompt? Opportunities and Challenges of Zero- and Few-Shot Learning for Human-AI Interaction in Creative Applications of Generative Models47Dang, H., Mecke, L., Lehmann, F., Goller, S., & Buschek, D. (2022). How to Prompt? Opportunities and Challenges of Zero- and Few-Shot Learning for Human-AI Interaction in Creative Applications of Generative Models.
On Measuring Social Biases in Prompt-Based Multi-Task Learning48Akyürek, A. F., Paik, S., Kocyigit, M. Y., Akbiyik, S., Runyun, Ş. L., & Wijaya, D. (2022). On Measuring Social Biases in Prompt-Based Multi-Task Learning.
Plot Writing From Pre-Trained Language Models49Jin, Y., Kadam, V., & Wanvarie, D. (2022). Plot Writing From Pre-Trained Language Models.
{S}tereo{S}et: Measuring stereotypical bias in pretrained language models50Nadeem, M., Bethke, A., & Reddy, S. (2021). StereoSet: Measuring stereotypical bias in pretrained language models. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 5356–5371. https://doi.org/10.18653/v1/2021.acl-long.416
Survey of Hallucination in Natural Language Generation51Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A., & Fung, P. (2022). Survey of Hallucination in Natural Language Generation. ACM Computing Surveys. https://doi.org/10.1145/3571730
Wordcraft: Story Writing With Large Language Models52Yuan, A., Coenen, A., Reif, E., & Ippolito, D. (2022). Wordcraft: Story Writing With Large Language Models. 27th International Conference on Intelligent User Interfaces, 841–852.
PainPoints: A Framework for Language-based Detection of Chronic Pain and Expert-Collaborative Text-Summarization53Fadnavis, S., Dhurandhar, A., Norel, R., Reinen, J. M., Agurto, C., Secchettin, E., Schweiger, V., Perini, G., & Cecchi, G. (2022). PainPoints: A Framework for Language-based Detection of Chronic Pain and Expert-Collaborative Text-Summarization. arXiv Preprint arXiv:2209.09814.
Self-Instruct: Aligning Language Model with Self Generated Instructions54Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., & Hajishirzi, H. (2022). Self-Instruct: Aligning Language Model with Self Generated Instructions.
From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models55Guo, J., Li, J., Li, D., Tiong, A. M. H., Li, B., Tao, D., & Hoi, S. C. H. (2022). From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models.
New and improved content moderation tooling56Markov, T. (2022). New and improved content moderation tooling. In OpenAI. OpenAI. https://openai.com/blog/new-and-improved-content-moderation-tooling/
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference57Schick, T., & Schütze, H. (2020). Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference.
Human-level concept learning through probabilistic program induction58Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332–1338.
{Riffusion - Stable diffusion for real-time music generation}59Forsgren, S., & Martiros, H. (2022). Riffusion - Stable diffusion for real-time music generation. https://riffusion.com/about
How to use OpenAI’s ChatGPT to write the perfect cold email60Bonta, A. (2022). How to use OpenAI’s ChatGPT to write the perfect cold email. https://www.streak.com/post/how-to-use-ai-to-write-perfect-cold-emails
Cacti: biology and uses61Nobel, P. S., & others. (2002). Cacti: biology and uses. Univ of California Press.
Are Language Models Worse than Humans at Following Prompts? It’s Complicated62Webson, A., Loo, A. M., Yu, Q., & Pavlick, E. (2023). Are Language Models Worse than Humans at Following Prompts? It’s Complicated. arXiv:2301.07085v1 [Cs.CL].
Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration63Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., & Ji, H. (2023). Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration.
Prompt Hacking
Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods64Crothers, E., Japkowicz, N., & Viktor, H. (2022). Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods.
New jailbreak based on virtual functions - smuggle illegal tokens to the backend.65u/Nin_kat. (2023). New jailbreak based on virtual functions - smuggle illegal tokens to the backend. https://www.reddit.com/r/ChatGPT/comments/10urbdj/new_jailbreak_based_on_virtual_functions_smuggle
Exploiting Programmatic Behavior of LLMs: Dual-Use Through Standard Security Attacks66Kang, D., Li, X., Stoica, I., Guestrin, C., Zaharia, M., & Hashimoto, T. (2023). Exploiting Programmatic Behavior of LLMs: Dual-Use Through Standard Security Attacks.
More than you've asked for: A Comprehensive Analysis of Novel Prompt Injection Threats to Application-Integrated Large Language Models67Greshake, K., Abdelnabi, S., Mishra, S., Endres, C., Holz, T., & Fritz, M. (2023). More than you’ve asked for: A Comprehensive Analysis of Novel Prompt Injection Threats to Application-Integrated Large Language Models.
ChatGPT "DAN" (and other "Jailbreaks")68KIHO, L. (2023). ChatGPT “DAN” (and other “Jailbreaks”). https://github.com/0xk1h0/ChatGPT_DAN
Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples69Branch, H. J., Cefalu, J. R., McHugh, J., Hujer, L., Bahl, A., del Castillo Iglesias, D., Heichman, R., & Darwishi, R. (2022). Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples.
Prompt injection attacks against GPT-370Willison, S. (2022). Prompt injection attacks against GPT-3. https://simonwillison.net/2022/Sep/12/prompt-injection/
Exploiting GPT-3 prompts with malicious inputs that order the model to ignore its previous directions71Goodside, R. (2022). Exploiting GPT-3 prompts with malicious inputs that order the model to ignore its previous directions. https://twitter.com/goodside/status/1569128808308957185
History Correction72Goodside, R. (2023). History Correction. https://twitter.com/goodside/status/1610110111791325188?s=20&t=ulviQABPXFIIt4ZNZPAUCQ
adversarial-prompts73Chase, H. (2022). adversarial-prompts. https://github.com/hwchase17/adversarial-prompts
GPT-3 Prompt Injection Defenses74Goodside, R. (2022). GPT-3 Prompt Injection Defenses. https://twitter.com/goodside/status/1578278974526222336?s=20&t=3UMZB7ntYhwAk3QLpKMAbw
Talking to machines: prompt engineering & injection75Mark, C. (2022). Talking to machines: prompt engineering & injection. https://artifact-research.com/artificial-intelligence/talking-to-machines-prompt-engineering-injection/
Using GPT-Eliezer against ChatGPT Jailbreaking76Stuart Armstrong, R. G. (2022). Using GPT-Eliezer against ChatGPT Jailbreaking. https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking
Exploring Prompt Injection Attacks77Selvi, J. (2022). Exploring Prompt Injection Attacks. https://research.nccgroup.com/2022/12/05/exploring-prompt-injection-attacks/
The entire prompt of Microsoft Bing Chat?! (Hi, Sydney.)78Liu, K. (2023). The entire prompt of Microsoft Bing Chat?! (Hi, Sydney.). https://twitter.com/kliu128/status/1623472922374574080
Ignore Previous Prompt: Attack Techniques For Language Models79Perez, F., & Ribeiro, I. (2022). Ignore Previous Prompt: Attack Techniques For Language Models. arXiv. https://doi.org/10.48550/ARXIV.2211.09527
Lessons learned on Language Model Safety and misuse80Brundage, M. (2022). Lessons learned on Language Model Safety and misuse. In OpenAI. OpenAI. https://openai.com/blog/language-model-safety-and-misuse/
Toxicity Detection with Generative Prompt-based Inference81Wang, Y.-S., & Chang, Y. (2022). Toxicity Detection with Generative Prompt-based Inference. arXiv. https://doi.org/10.48550/ARXIV.2205.12390
ok I saw a few people jailbreaking safeguards openai put on chatgpt so I had to give it a shot myself82Maz, A. (2022). ok I saw a few people jailbreaking safeguards openai put on chatgpt so I had to give it a shot myself. https://twitter.com/alicemazzy/status/1598288519301976064
Bypass @OpenAI's ChatGPT alignment efforts with this one weird trick83Piedrafita, M. (2022). Bypass @OpenAI’s ChatGPT alignment efforts with this one weird trick. https://twitter.com/m1guelpf/status/1598203861294252033
ChatGPT jailbreaking itself84Parfait, D. (2022). ChatGPT jailbreaking itself. https://twitter.com/haus_cole/status/1598541468058390534
Using "pretend" on #ChatGPT can do some wild stuff. You can kind of get some insight on the future, alternative universe.85Soares, N. (2022). Using “pretend” on #ChatGPT can do some wild stuff. You can kind of get some insight on the future, alternative universe. https://twitter.com/NeroSoares/status/1608527467265904643
I kinda like this one even more!86Moran, N. (2022). I kinda like this one even more! https://twitter.com/NickEMoran/status/1598101579626057728
uh oh87samczsun. (2022). uh oh. https://twitter.com/samczsun/status/1598679658488217601
Building A Virtual Machine inside ChatGPT88Degrave, J. (2022). Building A Virtual Machine inside ChatGPT. Engraved. https://www.engraved.blog/building-a-virtual-machine-inside/
Reliability
MathPrompter: Mathematical Reasoning using Large Language Models89Imani, S., Du, L., & Shrivastava, H. (2023). MathPrompter: Mathematical Reasoning using Large Language Models.
The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning90Ye, X., & Durrett, G. (2022). The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning.
Prompting GPT-3 To Be Reliable91Si, C., Gan, Z., Yang, Z., Wang, S., Wang, J., Boyd-Graber, J., & Wang, L. (2022). Prompting GPT-3 To Be Reliable.
On the Advance of Making Language Models Better Reasoners92Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., & Chen, W. (2022). On the Advance of Making Language Models Better Reasoners.
Ask Me Anything: A simple strategy for prompting language models93Arora, S., Narayan, A., Chen, M. F., Orr, L., Guha, N., Bhatia, K., Chami, I., Sala, F., & Ré, C. (2022). Ask Me Anything: A simple strategy for prompting language models.
Calibrate Before Use: Improving Few-Shot Performance of Language Models94Zhao, T. Z., Wallace, E., Feng, S., Klein, D., & Singh, S. (2021). Calibrate Before Use: Improving Few-Shot Performance of Language Models.
Can large language models reason about medical questions?95Liévin, V., Hother, C. E., & Winther, O. (2022). Can large language models reason about medical questions?
Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference96Mitchell, E., Noh, J. J., Li, S., Armstrong, W. S., Agarwal, A., Liu, P., Finn, C., & Manning, C. D. (2022). Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference.
On Second Thought, Let's Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning97Shaikh, O., Zhang, H., Held, W., Bernstein, M., & Yang, D. (2022). On Second Thought, Let’s Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning.
Evaluating language models can be tricky98Chase, H. (2022). Evaluating language models can be tricky. https://twitter.com/hwchase17/status/1607428141106008064
Constitutional AI: Harmlessness from AI Feedback99Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKinnon, C., Chen, C., Olsson, C., Olah, C., Hernandez, D., Drain, D., Ganguli, D., Li, D., Tran-Johnson, E., Perez, E., … Kaplan, J. (2022). Constitutional AI: Harmlessness from AI Feedback.
Surveys
Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition100Jurafsky, D., & Martin, J. H. (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Prentice Hall.
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing101Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2022). Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Computing Surveys. https://doi.org/10.1145/3560815
PromptPapers102Ding, N., & Hu, S. (2022). PromptPapers. https://github.com/thunlp/PromptPapers
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT103White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C. (2023). A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.
Techniques
Chain of Thought Prompting Elicits Reasoning in Large Language Models104Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou, D. (2022). Chain of Thought Prompting Elicits Reasoning in Large Language Models.
Large Language Models are Zero-Shot Reasoners105Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large Language Models are Zero-Shot Reasoners.
Self-Consistency Improves Chain of Thought Reasoning in Language Models106Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D. (2022). Self-Consistency Improves Chain of Thought Reasoning in Language Models.
What Makes Good In-Context Examples for GPT-3?107Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., & Chen, W. (2022). What Makes Good In-Context Examples for GPT-3? Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures. https://doi.org/10.18653/v1/2022.deelio-1.10
Generated Knowledge Prompting for Commonsense Reasoning108Liu, J., Liu, A., Lu, X., Welleck, S., West, P., Bras, R. L., Choi, Y., & Hajishirzi, H. (2021). Generated Knowledge Prompting for Commonsense Reasoning.
Recitation-Augmented Language Models109Sun, Z., Wang, X., Tay, Y., Yang, Y., & Zhou, D. (2022). Recitation-Augmented Language Models.
Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?110Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., & Zettlemoyer, L. (2022). Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?
Show Your Work: Scratchpads for Intermediate Computation with Language Models111Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma, M., Luan, D., Sutton, C., & Odena, A. (2021). Show Your Work: Scratchpads for Intermediate Computation with Language Models.
Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations112Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Bras, R. L., & Choi, Y. (2022). Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations.
STaR: Bootstrapping Reasoning With Reasoning113Zelikman, E., Wu, Y., Mu, J., & Goodman, N. D. (2022). STaR: Bootstrapping Reasoning With Reasoning.
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models114Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., & Chi, E. (2022). Least-to-Most Prompting Enables Complex Reasoning in Large Language Models.
Reframing Instructional Prompts to GPTk’s Language115Mishra, S., Khashabi, D., Baral, C., Choi, Y., & Hajishirzi, H. (2022). Reframing Instructional Prompts to GPTk’s Language. Findings of the Association for Computational Linguistics: ACL 2022. https://doi.org/10.18653/v1/2022.findings-acl.50
Cutting Down on Prompts and Parameters: Simple Few-Shot Learning with Language Models116Logan IV, R., Balazevic, I., Wallace, E., Petroni, F., Singh, S., & Riedel, S. (2022). Cutting Down on Prompts and Parameters: Simple Few-Shot Learning with Language Models. Findings of the Association for Computational Linguistics: ACL 2022, 2824–2835. https://doi.org/10.18653/v1/2022.findings-acl.222
Role-Play with Large Language Models117Shanahan, M., McDonell, K., & Reynolds, L. (2023). Role-Play with Large Language Models.
CAMEL: Communicative Agents for "Mind" Exploration of Large Scale Language Model Society118Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., & Ghanem, B. (2023). CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society.
TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks119Santu, S. K. K., & Feng, D. (2023). TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks.
Models
Image Models
Stable Diffusion120Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2021). High-Resolution Image Synthesis with Latent Diffusion Models.
DALLE121Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents.
Language Models
ChatGPT122OpenAI. (2022). ChatGPT: Optimizing Language Models for Dialogue. https://openai.com/blog/chatgpt/. https://openai.com/blog/chatgpt/
GPT-3123Brown, T. B. (2020). Language models are few-shot learners. arXiv Preprint arXiv:2005.14165.
Instruct GPT124Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback.
GPT-4125OpenAI. (2023). GPT-4 Technical Report.
PaLM: Scaling Language Modeling with Pathways126Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., … Fiedel, N. (2022). PaLM: Scaling Language Modeling with Pathways.
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model127Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M., Tow, J., Rush, A. M., Biderman, S., Webson, A., Ammanamanchi, P. S., Wang, T., Sagot, B., Muennighoff, N., del Moral, A. V., … Wolf, T. (2022). BLOOM: A 176B-Parameter Open-Access Multilingual Language Model.
BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting128Yong, Z.-X., Schoelkopf, H., Muennighoff, N., Aji, A. F., Adelani, D. I., Almubarak, K., Bari, M. S., Sutawika, L., Kasai, J., Baruwa, A., Winata, G. I., Biderman, S., Radev, D., & Nikoulina, V. (2022). BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting.
Jurassic-1: Technical Details and Evaluation, White paper, AI21 Labs, 2021129Lieber, O., Sharir, O., Lentz, B., & Shoham, Y. (2021). Jurassic-1: Technical Details and Evaluation, White paper, AI21 Labs, 2021. URL: Https://Uploads-Ssl. Webflow. Com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_ Tech_paper. Pdf.
GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model130Wang, B., & Komatsuzaki, A. (2021). GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax. https://github.com/kingoflolz/mesh-transformer-jax
Roberta: A robustly optimized bert pretraining approach131Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv Preprint arXiv:1907.11692.
Tooling
Ides
TextBox 2.0: A Text Generation Library with Pre-trained Language Models132Tang, T., Junyi, L., Chen, Z., Hu, Y., Yu, Z., Dai, W., Dong, Z., Cheng, X., Wang, Y., Zhao, W., Nie, J., & Wen, J.-R. (2022). TextBox 2.0: A Text Generation Library with Pre-trained Language Models.
Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation with Large Language Models133Strobelt, H., Webson, A., Sanh, V., Hoover, B., Beyer, J., Pfister, H., & Rush, A. M. (2022). Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation with Large Language Models. arXiv. https://doi.org/10.48550/ARXIV.2208.07852
PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts134Bach, S. H., Sanh, V., Yong, Z.-X., Webson, A., Raffel, C., Nayak, N. V., Sharma, A., Kim, T., Bari, M. S., Fevry, T., Alyafeai, Z., Dey, M., Santilli, A., Sun, Z., Ben-David, S., Xu, C., Chhablani, G., Wang, H., Fries, J. A., … Rush, A. M. (2022). PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts.
PromptChainer: Chaining Large Language Model Prompts through Visual Programming135Wu, T., Jiang, E., Donsbach, A., Gray, J., Molina, A., Terry, M., & Cai, C. J. (2022). PromptChainer: Chaining Large Language Model Prompts through Visual Programming.
OpenPrompt: An Open-source Framework for Prompt-learning136Ding, N., Hu, S., Zhao, W., Chen, Y., Liu, Z., Zheng, H.-T., & Sun, M. (2021). OpenPrompt: An Open-source Framework for Prompt-learning. arXiv Preprint arXiv:2111.01998.
PromptMaker: Prompt-Based Prototyping with Large Language Models137Jiang, E., Olson, K., Toh, E., Molina, A., Donsbach, A., Terry, M., & Cai, C. J. (2022). PromptMaker: Prompt-Based Prototyping with Large Language Models. Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3491101.3503564
Tools
LangChain138Chase, H. (2022). LangChain (0.0.66) [Computer software]. https://github.com/hwchase17/langchain
GPT Index139Liu, J. (2022). GPT Index. https://doi.org/10.5281/zenodo.1234
Footnotes
-
Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., & Tenenholtz, M. (2022). ↩
-
Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). ↩
-
Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., Callan, J., & Neubig, G. (2022). ↩
-
Significant-Gravitas. (2023). https://news.agpt.co/ ↩
-
Nakajima, Y. (2023). https://github.com/yoheinakajima/babyagi ↩
-
Reworkd.ai. (2023). https://github.com/reworkd/AgentGPT ↩
-
Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda, N., & Scialom, T. (2023). ↩
-
Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., & Singh, S. (2020). Autoprompt: Eliciting knowledge from language models with automatically generated prompts. arXiv Preprint arXiv:2010.15980. ↩
-
Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., & Ba, J. (2022). Large Language Models Are Human-Level Prompt Engineers. ↩
-
Lester, B., Al-Rfou, R., & Constant, N. (2021). The Power of Scale for Parameter-Efficient Prompt Tuning. ↩
-
Khashabi, D., Lyu, S., Min, S., Qin, L., Richardson, K., Welleck, S., Hajishirzi, H., Khot, T., Sabharwal, A., Singh, S., & Choi, Y. (2021). Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts. ↩
-
Lake, B. M., & Baroni, M. (2018). Generalization without Systematicity: On the Compositional Skills of Sequence-to-Sequence Recurrent Networks. https://doi.org/10.48550/arXiv.1711.00350 ↩
-
Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., & Schulman, J. (2021). Training Verifiers to Solve Math Word Problems. ↩
-
Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov, R., & Manning, C. D. (2018). HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering. ↩
-
Roy, S., & Roth, D. (2015). Solving General Arithmetic Word Problems. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 1743–1752. https://doi.org/10.18653/v1/D15-1202 ↩
-
Thorne, J., Vlachos, A., Christodoulopoulos, C., & Mittal, A. (2018). FEVER: a large-scale dataset for Fact Extraction and VERification. ↩
-
Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P. M., & Bowman, S. R. (2021). BBQ: A Hand-Built Bias Benchmark for Question Answering. ↩
-
Roose, K. (2022). Don’t ban chatgpt in schools. teach with it. https://www.nytimes.com/2023/01/12/technology/chatgpt-schools-teachers.html ↩
-
Lipman, J., & Distler, R. (2023). Schools Shouldn’t Ban Access to ChatGPT. https://time.com/6246574/schools-shouldnt-ban-access-to-chatgpt/ ↩
-
Bansal, A., yeh Ping-Chiang, Curry, M., Jain, R., Wigington, C., Manjunatha, V., Dickerson, J. P., & Goldstein, T. (2022). Certified Neural Network Watermarks with Randomized Smoothing. ↩
-
Gu, C., Huang, C., Zheng, X., Chang, K.-W., & Hsieh, C.-J. (2022). Watermarking Pre-trained Language Models with Backdooring. ↩
-
Noonan, E., & Averill, O. (2023). GW preparing disciplinary response to AI programs as faculty explore educational use. https://www.gwhatchet.com/2023/01/17/gw-preparing-disciplinary-response-to-ai-programs-as-faculty-explore-educational-use/ ↩
-
Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I., & Goldstein, T. (2023). A Watermark for Large Language Models. https://arxiv.org/abs/2301.10226 ↩
-
Mitchell, E., Lee, Y., Khazatsky, A., Manning, C., & Finn, C. (2023). DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature. https://doi.org/10.48550/arXiv.2301.11305 ↩
-
Oppenlaender, J. (2022). Prompt Engineering for Text-Based Generative Art. ↩
-
Parsons, G. (2022). The DALLE 2 Prompt Book. https://dallery.gallery/the-dalle-2-prompt-book/ ↩
-
Blake. (2022). With the right prompt, Stable Diffusion 2.0 can do hands. https://www.reddit.com/r/StableDiffusion/comments/z7salo/with_the_right_prompt_stable_diffusion_20_can_do/ ↩
-
Davenport, T. H., & Mittal, N. (2022). How Generative AI Is Changing Creative Work. Harvard Business Review. https://hbr.org/2022/11/how-generative-ai-is-changing-creative-work ↩
-
Captain, S. (2023). How AI Will Change the Workplace. Wall Street Journal. https://www.wsj.com/articles/how-ai-change-workplace-af2162ee ↩
-
Verma, P., & Vynck, G. D. (2023). ChatGPT took their jobs. Now they walk dogs and fix air conditioners. Washington Post. https://www.washingtonpost.com/technology/2023/06/02/ai-taking-jobs/ ↩
-
Ford, B. (2023). Bloomberg.Com. https://www.bloomberg.com/news/articles/2023-05-01/ibm-to-pause-hiring-for-back-office-jobs-that-ai-could-kill ↩
-
Efrat, A., & Levy, O. (2020). The Turking Test: Can Language Models Understand Instructions? ↩
-
Oppenlaender, J. (2022). A Taxonomy of Prompt Modifiers for Text-To-Image Generation. ↩
-
Wang, Z. J., Montoya, E., Munechika, D., Yang, H., Hoover, B., & Chau, D. H. (2022). DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models. ↩
-
Hao, Y., Chi, Z., Dong, L., & Wei, F. (2022). Optimizing Prompts for Text-to-Image Generation. ↩
-
Dohan, D., Xu, W., Lewkowycz, A., Austin, J., Bieber, D., Lopes, R. G., Wu, Y., Michalewski, H., Saurous, R. A., Sohl-dickstein, J., Murphy, K., & Sutton, C. (2022). Language Model Cascades. ↩
-
Liu, V., & Chilton, L. B. (2022). Design Guidelines for Prompt Engineering Text-to-Image Generative Models. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3491102.3501825 ↩
-
Perez, E., Ringer, S., Lukošiūtė, K., Nguyen, K., Chen, E., Heiner, S., Pettit, C., Olsson, C., Kundu, S., Kadavath, S., Jones, A., Chen, A., Mann, B., Israel, B., Seethor, B., McKinnon, C., Olah, C., Yan, D., Amodei, D., … Kaplan, J. (2022). Discovering Language Model Behaviors with Model-Written Evaluations. ↩
-
Su, H., Kasai, J., Wu, C. H., Shi, W., Wang, T., Xin, J., Zhang, R., Ostendorf, M., Zettlemoyer, L., Smith, N. A., & Yu, T. (2022). Selective Annotation Makes Language Models Better Few-Shot Learners. ↩
-
Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni, F., Schick, T., Dwivedi-Yu, J., Joulin, A., Riedel, S., & Grave, E. (2022). Atlas: Few-shot Learning with Retrieval Augmented Language Models. ↩
-
Wang, B., Feng, C., Nair, A., Mao, M., Desai, J., Celikyilmaz, A., Li, H., Mehdad, Y., & Radev, D. (2022). STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension. ↩
-
Beurer-Kellner, L., Fischer, M., & Vechev, M. (2022). Prompting Is Programming: A Query Language For Large Language Models. ↩
-
Ratner, N., Levine, Y., Belinkov, Y., Ram, O., Abend, O., Karpas, E., Shashua, A., Leyton-Brown, K., & Shoham, Y. (2022). Parallel Context Windows Improve In-Context Learning of Large Language Models. ↩
-
Bursztyn, V. S., Demeter, D., Downey, D., & Birnbaum, L. (2022). Learning to Perform Complex Tasks through Compositional Fine-Tuning of Language Models. ↩
-
Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y., Mirzaei, A., Arunkumar, A., Ashok, A., Dhanasekaran, A. S., Naik, A., Stap, D., Pathak, E., Karamanolakis, G., Lai, H. G., Purohit, I., Mondal, I., Anderson, J., Kuznia, K., Doshi, K., Patel, M., … Khashabi, D. (2022). Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks. ↩
-
Gao, T., Fisch, A., & Chen, D. (2021). Making Pre-trained Language Models Better Few-shot Learners. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). https://doi.org/10.18653/v1/2021.acl-long.295 ↩
-
Dang, H., Mecke, L., Lehmann, F., Goller, S., & Buschek, D. (2022). How to Prompt? Opportunities and Challenges of Zero- and Few-Shot Learning for Human-AI Interaction in Creative Applications of Generative Models. ↩
-
Akyürek, A. F., Paik, S., Kocyigit, M. Y., Akbiyik, S., Runyun, Ş. L., & Wijaya, D. (2022). On Measuring Social Biases in Prompt-Based Multi-Task Learning. ↩
-
Jin, Y., Kadam, V., & Wanvarie, D. (2022). Plot Writing From Pre-Trained Language Models. ↩
-
Nadeem, M., Bethke, A., & Reddy, S. (2021). StereoSet: Measuring stereotypical bias in pretrained language models. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 5356–5371. https://doi.org/10.18653/v1/2021.acl-long.416 ↩
-
Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A., & Fung, P. (2022). Survey of Hallucination in Natural Language Generation. ACM Computing Surveys. https://doi.org/10.1145/3571730 ↩
-
Yuan, A., Coenen, A., Reif, E., & Ippolito, D. (2022). Wordcraft: Story Writing With Large Language Models. 27th International Conference on Intelligent User Interfaces, 841–852. ↩
-
Fadnavis, S., Dhurandhar, A., Norel, R., Reinen, J. M., Agurto, C., Secchettin, E., Schweiger, V., Perini, G., & Cecchi, G. (2022). PainPoints: A Framework for Language-based Detection of Chronic Pain and Expert-Collaborative Text-Summarization. arXiv Preprint arXiv:2209.09814. ↩
-
Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., & Hajishirzi, H. (2022). Self-Instruct: Aligning Language Model with Self Generated Instructions. ↩
-
Guo, J., Li, J., Li, D., Tiong, A. M. H., Li, B., Tao, D., & Hoi, S. C. H. (2022). From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models. ↩
-
Markov, T. (2022). New and improved content moderation tooling. In OpenAI. OpenAI. https://openai.com/blog/new-and-improved-content-moderation-tooling/ ↩
-
Schick, T., & Schütze, H. (2020). Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference. ↩
-
Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332–1338. ↩
-
Forsgren, S., & Martiros, H. (2022). Riffusion - Stable diffusion for real-time music generation. https://riffusion.com/about ↩
-
Bonta, A. (2022). How to use OpenAI’s ChatGPT to write the perfect cold email. https://www.streak.com/post/how-to-use-ai-to-write-perfect-cold-emails ↩
-
Nobel, P. S., & others. (2002). Cacti: biology and uses. Univ of California Press. ↩
-
Webson, A., Loo, A. M., Yu, Q., & Pavlick, E. (2023). Are Language Models Worse than Humans at Following Prompts? It’s Complicated. arXiv:2301.07085v1 [Cs.CL]. ↩
-
Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., & Ji, H. (2023). Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration. ↩
-
Crothers, E., Japkowicz, N., & Viktor, H. (2022). Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods. ↩
-
u/Nin_kat. (2023). New jailbreak based on virtual functions - smuggle illegal tokens to the backend. https://www.reddit.com/r/ChatGPT/comments/10urbdj/new_jailbreak_based_on_virtual_functions_smuggle ↩
-
Kang, D., Li, X., Stoica, I., Guestrin, C., Zaharia, M., & Hashimoto, T. (2023). Exploiting Programmatic Behavior of LLMs: Dual-Use Through Standard Security Attacks. ↩
-
Greshake, K., Abdelnabi, S., Mishra, S., Endres, C., Holz, T., & Fritz, M. (2023). More than you’ve asked for: A Comprehensive Analysis of Novel Prompt Injection Threats to Application-Integrated Large Language Models. ↩
-
KIHO, L. (2023). ChatGPT “DAN” (and other “Jailbreaks”). https://github.com/0xk1h0/ChatGPT_DAN ↩
-
Branch, H. J., Cefalu, J. R., McHugh, J., Hujer, L., Bahl, A., del Castillo Iglesias, D., Heichman, R., & Darwishi, R. (2022). Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples. ↩
-
Willison, S. (2022). Prompt injection attacks against GPT-3. https://simonwillison.net/2022/Sep/12/prompt-injection/ ↩
-
Goodside, R. (2022). Exploiting GPT-3 prompts with malicious inputs that order the model to ignore its previous directions. https://twitter.com/goodside/status/1569128808308957185 ↩
-
Goodside, R. (2023). History Correction. https://twitter.com/goodside/status/1610110111791325188?s=20&t=ulviQABPXFIIt4ZNZPAUCQ ↩
-
Chase, H. (2022). adversarial-prompts. https://github.com/hwchase17/adversarial-prompts ↩
-
Goodside, R. (2022). GPT-3 Prompt Injection Defenses. https://twitter.com/goodside/status/1578278974526222336?s=20&t=3UMZB7ntYhwAk3QLpKMAbw ↩
-
Mark, C. (2022). Talking to machines: prompt engineering & injection. https://artifact-research.com/artificial-intelligence/talking-to-machines-prompt-engineering-injection/ ↩
-
Stuart Armstrong, R. G. (2022). Using GPT-Eliezer against ChatGPT Jailbreaking. https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking ↩
-
Selvi, J. (2022). Exploring Prompt Injection Attacks. https://research.nccgroup.com/2022/12/05/exploring-prompt-injection-attacks/ ↩
-
Liu, K. (2023). The entire prompt of Microsoft Bing Chat?! (Hi, Sydney.). https://twitter.com/kliu128/status/1623472922374574080 ↩
-
Perez, F., & Ribeiro, I. (2022). Ignore Previous Prompt: Attack Techniques For Language Models. arXiv. https://doi.org/10.48550/ARXIV.2211.09527 ↩
-
Brundage, M. (2022). Lessons learned on Language Model Safety and misuse. In OpenAI. OpenAI. https://openai.com/blog/language-model-safety-and-misuse/ ↩
-
Wang, Y.-S., & Chang, Y. (2022). Toxicity Detection with Generative Prompt-based Inference. arXiv. https://doi.org/10.48550/ARXIV.2205.12390 ↩
-
Maz, A. (2022). ok I saw a few people jailbreaking safeguards openai put on chatgpt so I had to give it a shot myself. https://twitter.com/alicemazzy/status/1598288519301976064 ↩
-
Piedrafita, M. (2022). Bypass @OpenAI’s ChatGPT alignment efforts with this one weird trick. https://twitter.com/m1guelpf/status/1598203861294252033 ↩
-
Parfait, D. (2022). ChatGPT jailbreaking itself. https://twitter.com/haus_cole/status/1598541468058390534 ↩
-
Soares, N. (2022). Using “pretend” on #ChatGPT can do some wild stuff. You can kind of get some insight on the future, alternative universe. https://twitter.com/NeroSoares/status/1608527467265904643 ↩
-
Moran, N. (2022). I kinda like this one even more! https://twitter.com/NickEMoran/status/1598101579626057728 ↩
-
samczsun. (2022). uh oh. https://twitter.com/samczsun/status/1598679658488217601 ↩
-
Degrave, J. (2022). Building A Virtual Machine inside ChatGPT. Engraved. https://www.engraved.blog/building-a-virtual-machine-inside/ ↩
-
Imani, S., Du, L., & Shrivastava, H. (2023). MathPrompter: Mathematical Reasoning using Large Language Models. ↩
-
Ye, X., & Durrett, G. (2022). The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning. ↩
-
Si, C., Gan, Z., Yang, Z., Wang, S., Wang, J., Boyd-Graber, J., & Wang, L. (2022). Prompting GPT-3 To Be Reliable. ↩
-
Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., & Chen, W. (2022). On the Advance of Making Language Models Better Reasoners. ↩
-
Arora, S., Narayan, A., Chen, M. F., Orr, L., Guha, N., Bhatia, K., Chami, I., Sala, F., & Ré, C. (2022). Ask Me Anything: A simple strategy for prompting language models. ↩
-
Zhao, T. Z., Wallace, E., Feng, S., Klein, D., & Singh, S. (2021). Calibrate Before Use: Improving Few-Shot Performance of Language Models. ↩
-
Liévin, V., Hother, C. E., & Winther, O. (2022). Can large language models reason about medical questions? ↩
-
Mitchell, E., Noh, J. J., Li, S., Armstrong, W. S., Agarwal, A., Liu, P., Finn, C., & Manning, C. D. (2022). Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference. ↩
-
Shaikh, O., Zhang, H., Held, W., Bernstein, M., & Yang, D. (2022). On Second Thought, Let’s Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning. ↩
-
Chase, H. (2022). Evaluating language models can be tricky. https://twitter.com/hwchase17/status/1607428141106008064 ↩
-
Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKinnon, C., Chen, C., Olsson, C., Olah, C., Hernandez, D., Drain, D., Ganguli, D., Li, D., Tran-Johnson, E., Perez, E., … Kaplan, J. (2022). Constitutional AI: Harmlessness from AI Feedback. ↩
-
Jurafsky, D., & Martin, J. H. (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Prentice Hall. ↩
-
Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2022). Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Computing Surveys. https://doi.org/10.1145/3560815 ↩
-
Ding, N., & Hu, S. (2022). PromptPapers. https://github.com/thunlp/PromptPapers ↩
-
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C. (2023). A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT. ↩
-
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou, D. (2022). Chain of Thought Prompting Elicits Reasoning in Large Language Models. ↩
-
Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large Language Models are Zero-Shot Reasoners. ↩
-
Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D. (2022). Self-Consistency Improves Chain of Thought Reasoning in Language Models. ↩
-
Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., & Chen, W. (2022). What Makes Good In-Context Examples for GPT-3? Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures. https://doi.org/10.18653/v1/2022.deelio-1.10 ↩
-
Liu, J., Liu, A., Lu, X., Welleck, S., West, P., Bras, R. L., Choi, Y., & Hajishirzi, H. (2021). Generated Knowledge Prompting for Commonsense Reasoning. ↩
-
Sun, Z., Wang, X., Tay, Y., Yang, Y., & Zhou, D. (2022). Recitation-Augmented Language Models. ↩
-
Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., & Zettlemoyer, L. (2022). Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? ↩
-
Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma, M., Luan, D., Sutton, C., & Odena, A. (2021). Show Your Work: Scratchpads for Intermediate Computation with Language Models. ↩
-
Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Bras, R. L., & Choi, Y. (2022). Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations. ↩
-
Zelikman, E., Wu, Y., Mu, J., & Goodman, N. D. (2022). STaR: Bootstrapping Reasoning With Reasoning. ↩
-
Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., & Chi, E. (2022). Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. ↩
-
Mishra, S., Khashabi, D., Baral, C., Choi, Y., & Hajishirzi, H. (2022). Reframing Instructional Prompts to GPTk’s Language. Findings of the Association for Computational Linguistics: ACL 2022. https://doi.org/10.18653/v1/2022.findings-acl.50 ↩
-
Logan IV, R., Balazevic, I., Wallace, E., Petroni, F., Singh, S., & Riedel, S. (2022). Cutting Down on Prompts and Parameters: Simple Few-Shot Learning with Language Models. Findings of the Association for Computational Linguistics: ACL 2022, 2824–2835. https://doi.org/10.18653/v1/2022.findings-acl.222 ↩
-
Shanahan, M., McDonell, K., & Reynolds, L. (2023). Role-Play with Large Language Models. ↩
-
Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., & Ghanem, B. (2023). CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society. ↩
-
Santu, S. K. K., & Feng, D. (2023). TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks. ↩
-
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2021). High-Resolution Image Synthesis with Latent Diffusion Models. ↩
-
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents. ↩
-
OpenAI. (2022). ChatGPT: Optimizing Language Models for Dialogue. https://openai.com/blog/chatgpt/. https://openai.com/blog/chatgpt/ ↩
-
Brown, T. B. (2020). Language models are few-shot learners. arXiv Preprint arXiv:2005.14165. ↩
-
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback. ↩
-
OpenAI. (2023). GPT-4 Technical Report. ↩
-
Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., … Fiedel, N. (2022). PaLM: Scaling Language Modeling with Pathways. ↩
-
Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M., Tow, J., Rush, A. M., Biderman, S., Webson, A., Ammanamanchi, P. S., Wang, T., Sagot, B., Muennighoff, N., del Moral, A. V., … Wolf, T. (2022). BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. ↩
-
Yong, Z.-X., Schoelkopf, H., Muennighoff, N., Aji, A. F., Adelani, D. I., Almubarak, K., Bari, M. S., Sutawika, L., Kasai, J., Baruwa, A., Winata, G. I., Biderman, S., Radev, D., & Nikoulina, V. (2022). BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting. ↩
-
Lieber, O., Sharir, O., Lentz, B., & Shoham, Y. (2021). Jurassic-1: Technical Details and Evaluation, White paper, AI21 Labs, 2021. URL: Https://Uploads-Ssl. Webflow. Com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_ Tech_paper. Pdf. ↩
-
Wang, B., & Komatsuzaki, A. (2021). GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax. https://github.com/kingoflolz/mesh-transformer-jax ↩
-
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv Preprint arXiv:1907.11692. ↩
-
Tang, T., Junyi, L., Chen, Z., Hu, Y., Yu, Z., Dai, W., Dong, Z., Cheng, X., Wang, Y., Zhao, W., Nie, J., & Wen, J.-R. (2022). TextBox 2.0: A Text Generation Library with Pre-trained Language Models. ↩
-
Strobelt, H., Webson, A., Sanh, V., Hoover, B., Beyer, J., Pfister, H., & Rush, A. M. (2022). Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation with Large Language Models. arXiv. https://doi.org/10.48550/ARXIV.2208.07852 ↩
-
Bach, S. H., Sanh, V., Yong, Z.-X., Webson, A., Raffel, C., Nayak, N. V., Sharma, A., Kim, T., Bari, M. S., Fevry, T., Alyafeai, Z., Dey, M., Santilli, A., Sun, Z., Ben-David, S., Xu, C., Chhablani, G., Wang, H., Fries, J. A., … Rush, A. M. (2022). PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts. ↩
-
Wu, T., Jiang, E., Donsbach, A., Gray, J., Molina, A., Terry, M., & Cai, C. J. (2022). PromptChainer: Chaining Large Language Model Prompts through Visual Programming. ↩
-
Ding, N., Hu, S., Zhao, W., Chen, Y., Liu, Z., Zheng, H.-T., & Sun, M. (2021). OpenPrompt: An Open-source Framework for Prompt-learning. arXiv Preprint arXiv:2111.01998. ↩
-
Jiang, E., Olson, K., Toh, E., Molina, A., Donsbach, A., Terry, M., & Cai, C. J. (2022). PromptMaker: Prompt-Based Prototyping with Large Language Models. Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3491101.3503564 ↩
-
Chase, H. (2022). LangChain (0.0.66) [Computer software]. https://github.com/hwchase17/langchain ↩
-
Liu, J. (2022). GPT Index. https://doi.org/10.5281/zenodo.1234 ↩
Sander Schulhoff
Sander Schulhoff is the Founder of Learn Prompting and an ML Researcher at the University of Maryland. He created the first open-source Prompt Engineering guide, reaching 3M+ people and teaching them to use tools like ChatGPT. Sander also led a team behind Prompt Report, the most comprehensive study of prompting ever done, co-authored with researchers from the University of Maryland, OpenAI, Microsoft, Google, Princeton, Stanford, and other leading institutions. This 76-page survey analyzed 1,500+ academic papers and covered 200+ prompting techniques.