๋ณธ๋ฌธ์œผ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

๐ŸŸก ์ตœ์†Œ ์ตœ๋Œ€ ํ”„๋กฌํ”„ํŠธ

์ตœ์†Œ ์ตœ๋Œ€ ํ”„๋กฌํ”„ํŠธ(LtM)1๋Š” CoT ํ”„๋กฌํ”„ํŒ…์—์„œ ๋” ๋‚˜์•„๊ฐ€ ํ•˜๋‚˜์˜ ๋ฌธ์ œ๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์„œ๋ธŒ ๋ฌธ์ œ๋“ค๋กœ ๋ถ„ํ•  ํ›„ ๊ฐ๊ฐ์„ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ๊ธฐ์ˆ ์„ ์‹ค์ œ๋กœ ์•„์ด๋“ค์„ ์œ„ํ•œ ๊ต์œก ์ „๋žต์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„์„œ ๋งŒ๋“ค์–ด์กŒ์Šต๋‹ˆ๋‹ค.

๋จผ์ € CoT ํ”„๋กฌํ”„ํŒ…์—์„œ ํ’€์–ด์•ผ ํ•  ๋ฌธ์ œ๋Š” ๊ฐ๊ฐ ์„œ๋กœ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœํ•˜๋Š” ์„œ๋ธŒ ๋ฌธ์ œ๋“ค๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ ์ด ์„œ๋ธŒ ๋ฌธ์ œ๋“ค์€ ํ•œ๋ฒˆ์— ํ•˜๋‚˜์”ฉ ํ•ด๊ฒฐ๋ฉ๋‹ˆ๋‹ค. ์ผ๋ฐ˜ CoT์™€๋Š” ๋‹ค๋ฅด๊ฒŒ ์ด์ „์— ํ’€์—ˆ๋˜ ์„œ๋ธŒ ๋ฌธ์ œ๋“ค์€ ๋‹ค์Œ ๋ฌธ์ œ๋ฅผ ํ‘ธ๋Š”๋ฐ์— ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.

A diagram of a least to most prompting
์ตœ์†Œ ์ตœ๋Œ€ ํ”„๋กฌํ”„ํŒ… ๋„ํ‘œ

์˜ˆ์‹œ: ์†Œ๋น„์ž ์—ฐ๊ตฌ ๊ฒฐ๊ณผโ€‹

์กฐ๊ธˆ ๋ณต์žกํ•œ ์†Œ๋น„์ž ์„œ๋น„์Šค ์งˆ๋ฌธ์„ ํ•ด๋ด…์‹œ๋‹ค.


์‹คํŒจ์ž…๋‹ˆ๋‹ค. ์ด์ œ ์„œ๋ธŒ ๋ฌธ์ œ๋“ค๋กœ ๋‚˜๋ˆ„์–ด๋ณด๋Š” ๊ณผ์ •์„ ์ง„ํ–‰ํ•ด๋ด…์‹œ๋‹ค.
์ฒซ ๋ฒˆ์งธ ์„œ๋ธŒ ๋ฌธ์ œ๋ฅผ ํ’€์–ด๋ด…์‹œ๋‹ค.

์ฒซ ๋ฒˆ์งธ ๋ฌธ์ œ๋ฅผ ํ‘ธ๋Š” ๊ฒƒ ๋งŒ์œผ๋กœ๋„ ์šฐ๋ฆฌ๋Š” ๋ฌธ์ œ ์ „์ฒด๋ฅผ ํ’€ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ๋งŒ์•ฝ GPT-3๊ฐ€ ๋‹ต์„ ์ฆ‰๊ฐ์ ์œผ๋กœ ์ฃผ์ง€ ๋ชปํ•œ๋‹ค๊ณ  ํ•ด๋„ ๋‹ต์„ ์ค„๋•Œ๊นŒ์ง€ ์šฐ๋ฆฌ๋Š” ๋‹ค์Œ ๋ฌธ์ œ๋ฅผ ํ’€ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. Let's go step by step.๋ผ๋Š” ๋ฌธ์žฅ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์„ ์ฐธ๊ณ ํ•˜์„ธ์š”. ์ด ๋ฌธ์žฅ์€ ํ•„์ˆ˜๊ฐ€ ์•„๋‹ˆ์ง€๋งŒ ์ตœ์†Œํ•œ ์ด ์˜ˆ์ œ์—์„œ๋Š” ๋„์›€์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

์˜ˆ์ œ: ๋ฌธ์ž ์—ฐ๊ฒฐโ€‹

LtM์€ ๋ฌธ์ œ๋ฅผ ์—ฌ๋Ÿฌ ๋‹จ๊ณ„๋กœ ๋‚˜๋ˆ„๋Š”๋ฐ ๋ช…์‹œ์ ์ธ ์ง€์‹œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ํ“จ์ƒท ํ”„๋กฌํ”„ํŒ…์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์œ„์—์„œ ์„ค๋ช…์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ์—ฌ๋Ÿฌ๊ฐœ์˜ ํ”„๋กฌํ”„ํŠธ๊ฐ€ ์•„๋‹ˆ๋ผ ํ•˜๋‚˜์˜ ํ”„๋กฌํ”„๋กฌํ”„ํŠธ๋กœ ๊ฐœ๋ฐœ๋˜๋Š” ๊ฒฝ์šฐ๋„ ์ข…์ข… ์žˆ์Šต๋‹ˆ๋‹ค. ๊ฐ ๊ฐœ๋ณ„์ ์ธ ๋‹จ์–ด๋“ค์˜ ๋งˆ์ง€๋ง‰ ๋ฌธ์ž๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ’€์–ด๋ด…์‹œ๋‹ค.

์ฒซ ๋ฒˆ์งธ ์‹œ๋„: ํ‘œ์ค€โ€‹

ํ“จ์ƒท์„ ์‚ฌ์šฉํ•˜๋Š” ํ‘œ์ค€ ํ”„๋กฌํ”„ํŠธ ์˜ˆ์ œ๋Š” ์ œ๋Œ€๋กœ ์ž‘๋™ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ์‹ฌ์ง€์–ด text-davinci-003๊ฐ™์€ ๋” ์ข‹์€ ๋ชจ๋ธ์„ ์จ๋„ ๊ทธ๋ ‡์Šต๋‹ˆ๋‹ค.

๋‘ ๋ฒˆ์งธ ์‹œ๋„: ์‚ฌ๊ณ  ์‚ฌ์Šฌ ํ”„๋กฌํ”„ํŒ…โ€‹

์‚ฌ๊ณ  ์‚ฌ์Šฌ ํ”„๋กฌํ”„ํŒ…์€ ํ‘œ์ค€ ํ”„๋กฌํ”„ํŠธ ๋ณด๋‹ค๋Š” ๋‚ซ์Šต๋‹ˆ๋‹ค. ์ด์ œ๋Š” ๋ชจ๋ธ๋“ค์ด ๋‹จ์–ด์˜ ๋งˆ์ง€๋ง‰ ๋ฌธ์ž๋ฅผ ์ถ”์ถœํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•ด์กŒ๊ณ  ์ด์ „๋ณด๋‹ค ๋ฌธ์ž๋“ค์„ ๋ชจ์œผ๋Š” ๋ชจ์œผ๋Š” ์ž‘์—…์˜ ๋ณต์žก์„ฑ์ด ๋‚ด๋ ค๊ฐ”๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ๋Šฅ์ด ์ข‹์•„์งˆ ์ˆ˜ ๋ฐ–์— ์—†์—ˆ์Šต๋‹ˆ๋‹ค.

์„ธ ๋ฒˆ์งธ ์‹œ๋„: ์ตœ์†Œ ์ตœ๋Œ€ ํ”„๋กฌํ”„ํŒ…(ํ”„๋กฌํ”„ํŠธ ํ•œ ๊ฐœ)โ€‹

์ตœ์†Œ ์ตœ๋Œ€ ํ”„๋กฌํ”„ํŒ…์„ ํ†ตํ•ด์„œ ์šฐ๋ฆฌ๋Š” ์ด์ „์— ์—ฐ๊ฒฐ๋œ ๊ฒฐ๊ณผ๋ฅผ ๋‹ค์‹œ ์ง„์ˆ ํ•˜๊ธฐ ์œ„ํ•œ ๊ฐœ๋ณ„ ๋‹จ๊ณ„๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜์—ฌ ์‚ฌ๊ณ  ์‚ฌ์Šฌ ๊ฐœ๋…์„ ๊ฐ•ํ™”ํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ƒˆ๋กœ์šด ๋ฌธ์ž๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ๊ฐ๊ฐ์˜ ๊ณผ์ •๋“ค์„ ๋‹จ์ˆœํ™”ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ๋ฐฉ๋ฒ•์€ ๋‹จ์–ด๊ฐ€ 12๊ฐœ ์ด์ƒ์ผ ๋•Œ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค.

์ด ์ ‘๊ทผ๋ฒ•์€ ๊ทธ๋ƒฅ ์‚ฌ๊ณ  ์‚ฌ์Šฌ ๋ฐฉ์‹๊ณผ ๋น„์Šทํ•ด๋ณด์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹ค์ œ๋กœ๋Š” ๊ต‰์žฅํžˆ ๋‹ค๋ฆ…๋‹ˆ๋‹ค. ๊ฐ€์žฅ ๋‹ค๋ฅธ ๋ถ€๋ถ„์€ ๋ชจ๋“  ๋‹จ๊ณ„์—์„œ ์ด์ „์˜ ์—ฐ๊ฒฐ์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. "think, machine, learning"์˜ ์˜ˆ๋ฅผ ๋“ค์–ด๋ด…์‹œ๋‹ค, "k","e","g" ๊ฐ๊ฐ์„ ๊ฐœ๋ณ„์ ์œผ๋กœ ์—ฐ๊ฒฐํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ "k"์™€ "e"๋ฅผ ๋”ํ•ด์„œ "ke"๋ฅผ ๋งŒ๋“ค๊ณ  ๊ทธ ๋‹ค์Œ "g"๋ฅผ ๋”ํ•˜๋Š” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ์ด์ „์˜ ๊ฒฐ๊ณผ๋ฌผ์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ธํ•ด์„œ ๋ชจ๋ธ์€ ๊ฐ๊ฐ์˜ ๋‹จ๊ณ„์—์„œ๋Š” ์•„์ฃผ ์กฐ๊ธˆ์˜ ์ž‘์—…๋งŒ์„ ํ•„์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋” ๊ธด ์‚ฌ์Šฌ์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ฒฐ๋ก โ€‹

12๊ธ€์ž๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ์ง€๋‚œ ๋ฌธ์ œ์—์„œ ์‚ฌ๊ณ  ์‚ฌ์Šฌ์€ 34%์˜ ์ •ํ™•๋„๋ฅผ ๋‚ด์—ˆ์ง€๋งŒ ์ตœ์†Œ ์ตœ๋Œ€ ํ”„๋กฌํ”„ํŒ…์—์„œ๋Š” 74%์˜ ์ •ํ™•๋„๋ฅผ ๋‚ด์—ˆ์Šต๋‹ˆ๋‹ค.(text-davinci-002๋ฅผ ํ™œ์šฉํ–ˆ์„ ๋•Œ)

์˜ˆ์ œ: ๊ตฌ์„ฑ ์ผ๋ฐ˜ํ™” (SCAN)โ€‹

์Šค์บ” ๋ฌธ์ œ2์€ ๋ชจ๋ธ์ด ์ž์—ฐ์–ด๋ฅผ ์ผ๋ จ์˜ ํ–‰๋™์œผ๋กœ ๋ฐ”๊พธ๋Š” ๊ณผ์ •์„ ์š”๊ตฌ ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด์„œ, "run left and walk twice"๋ผ๋Š” ๋ฌธ์žฅ์„ "TURN_LEFT + RUN + WALK * 2"๋กœ ๋ฐ”๊พธ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์–ธ์–ด ๋ชจ๋ธ์€ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ณด๋‹ค ๋” ๊ธด ๋ฌธ์žฅ์„ ๋งˆ์ฃผํ–ˆ์„ ๋•Œ ํŠนํžˆ ๋” ๋‚˜์œ ์„ฑ๋Šฅ์„ ๋ณด์ž…๋‹ˆ๋‹ค.

์ฒซ ๋ฒˆ์งธ ์‹œ๋„: ํ‘œ์ค€ ํ”„๋กฌํ”„ํŒ…โ€‹

ํ‘œ์ค€ ํ”„๋กฌํ”„ํŒ…์„ ์‚ฌ์šฉํ–ˆ์„ ๋•Œ text-davinci-003์€ ์ธ์ƒ์ ์ด์ง€๋งŒ ์—ฌ์ „ํžˆ ์‹คํŒจํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

๋‘ ๋ฒˆ์งธ ์‹œ๋„: ์ตœ์†Œ ์ตœ๋Œ€, ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„ - ์ถ•์†Œโ€‹

์šฐ๋ฆฌ๋Š” 2๊ฐ€์ง€์˜ ๋‹ค๋ฅธ ํ”„๋กฌํ”„ํŠธ๋ฅผ ๋‹ค๋ฃฐ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ”„๋กฌํ”„ํŠธ๋Š” ๊ธฐ์กด์˜ ๋ฌธ์ œ๋ฅผ ๋” ๋‹จ์ˆœํ™”๋œ ๋‹จ๊ณ„๋กœ ๋ฐ”๊พธ๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ํ”„๋กฌํ”„ํŠธ๋Š” ์ด๋Ÿฌํ•œ ๋‹จ์ˆœํ™”๋œ ๋‹จ๊ณ„๋ฅผ ํ•ฉ์ณ ์‹ค์ œ ํ–‰๋™์œผ๋กœ ๋งŒ๋“œ๋Š” ๋ฐ ์‚ฌ์šฉ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

๋‘ ํ”„๋กฌํ”„ํŠธ๋Š” ๋ชจ๋‘ ๊ธธ๊ณ  ๊ทธ๋ฆฌ๊ณ  ํ† ํฐ์— ์ €์žฅํ•  ์ž‘์—…์— ํŒŒ์ด์ฌ ์••์ถ• ํ‘œ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ž์—ฐ์–ด ์„ค๋ช…์„ ๋ณด๋‹ค ๋ช…ํ™•ํ•˜๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค.(์—ฌ์ „ํžˆ ์ธ๊ฐ„ ์นœํ™”์ ์ธ ์–ธ์–ด๋กœ) ์ด๊ฒƒ์€ ๋งคํ•‘ ๋‹จ๊ณ„์—์„œ ์ˆœ์ฐจ์ ์œผ๋กœ ์ƒํ™ฉ์„ ํŒŒ์•…ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด์„œ "jump around left twice"๋Š” "jump left" -> TURN_LEFT + JUMP, "jump around left" -> `(TURN_LEFT + JUMP) * 4๋กœ ์ถ•์†Œ๋ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์ถ•์†Œ ๋‹จ๊ณ„๋Š” ๋ฐ˜๋ณต์˜ ๊ฐœ๋…์„ ์„ค๋ช…ํ•˜๋Š” ๋ฐ์—๋„ ์‚ฌ์šฉ์ด๋ฉ๋‹ˆ๋‹ค.

๋‘ ๋ฒˆ์งธ ์‹œ๋„: ์ตœ์†Œ ์ตœ๋Œ€, ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„ - ํ•ฉ์น˜๊ธฐโ€‹

๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ ์šฐ๋ฆฌ๋Š” ์ถ•์†Œ๋œ ๊ฒฐ๊ณผ๋ฌผ์„ ์‚ฌ์šฉํ•  ๊ฒƒ์ด๊ณ  ๋˜ ๊ต‰์žฅํžˆ ๊ธด ํ”„๋กฌํ”„ํŠธ๋ฅผ ์‚ฌ์šฉํ•ด์„œ ์ถ•์†Œ๋œ ์ž์—ฐ์–ด ์„ค๋ช…์„ ํ–‰๋™์˜ ๊ณผ์ •์œผ๋กœ ๋งŒ๋“ค ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์šฐ๋ฆฌ๋Š” ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์˜ ๊ฒฐ๊ณผ๋ฌผ์„ ์‚ฝ์ž…ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค:

"jump around left twice" can be solved by: "jump left", "jump around left", "jump around left twice". "walk opposite left thrice" can be solved by: "walk opposite left", "walk opposite left thrice". So, "jump around left twice after walk opposite left thrice" can be solved by: "jump left", "jump around left", "jump around left twice", "walk opposite left", "walk opposite left thrice".

LLM์œผ๋กœ์š”.

๊ฒฐ๋ก โ€‹

LtM์€ ์—ฌ๋Ÿฌ ์žฅ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค:

  • ์‚ฌ๊ณ  ์‚ฌ์Šฌ๋ณด๋‹ค ๋” ๊ฐœ์„ ๋œ ์ •ํ™•๋„
  • ํ”„๋กฌํ”„ํŠธ์•ˆ์˜ ์˜ˆ์‹œ๋“ค ๋ณด๋‹ค ๋” ๋ณต์žกํ•œ ๋ฌธ์ œ๋“ค์„ ์ผ๋ฐ˜ํ™”ํ•˜๋Š”๋ฐ ์žฅ์ ์ด ์žˆ๋‹ค.
  • ํŠนํžˆ SCAN๊ฐ™์€ ๋ฌธ์ œ์—์„œ ๊ตฌ์„ฑ ์ผ๋ฐ˜ํ™”์— ๊ต‰์žฅํ•œ ์žฅ์ ์ด ์žˆ๋‹ค.

text-davinci-002์— ํ‘œ์ค€ ํ”„๋กฌํ”„ํŠธ๋กœ ์ž‘์„ฑํ•œ ๊ฒฐ๊ณผ๋Š” 6%์ •๋„์˜ SCAN๋ฌธ์ œ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง€๋Š”๋ฐ ์ตœ์†Œ ์ตœ๋Œ€ ํ”„๋กฌํ”„ํŒ…์˜ ๊ฒฐ๊ณผ๋Š” 76%์˜ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ code-davinci-002 ๋ชจ๋ธ์—์„œ๋Š” ๋” ๋šœ๋ ทํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š”๋ฐ ์ตœ์†Œ ์ตœ๋Œ€ ํ”„๋กฌํ”„ํŒ…์€ ๋ฌด๋ ค 99.7%์˜ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง„๋‹ค.


  1. Zhou, D., Schรคrli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., & Chi, E. (2022). Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. โ†ฉ
  2. Lake, B. M., & Baroni, M. (2018). Generalization without Systematicity: On the Compositional Skills of Sequence-to-Sequence Recurrent Networks. https://doi.org/10.48550/arXiv.1711.00350 โ†ฉ