提示工程指南
😃 基礎
💼 基礎應用
🧙‍♂️ 進階
🤖 代理商
⚖️ 可靠性
🖼️ 圖像提示詞
🔓 提示駭客攻擊
🔨 工具
💪 提示微調
🎲 雜項
📙 Vocabulary Reference
📚 Bibliography
📦 Prompted Products
🛸 Additional Resources
🔥 Hot Topics
✨ Credits
⚖️ 可靠性🟢 提示去偏差法

提示去偏差法

🟢 This article is rated easy
Reading Time: 1 minute

Last updated on August 7, 2024

本頁面介紹了一些簡單的技巧用以去除提示中的偏差。

樣本去偏差

根據樣例在提示中的分佈和順序,exemplars 可能會引起大語言模型(LLM)補全結果的偏差。在什麼是提示的內容頁面中,這一點有所討論。

分佈

當討論提示中樣例的分佈時,我們指的是不同類別樣例的數量。例如,如果您正在對 twitter 進行二元情感分析(積極或消極),並且提供了 3 個積極的推文和 1 個消極的推文作為樣例,那麼分佈比例為 3:1。由於分佈偏向積極推文,因此模型將傾向於預測積極推文。

較差:

Q: 推文:"多美好的一天!"
A: 積極

Q: 推文:"我喜歡牛仔褲口袋"
A: 積極

Q: 推文:"我喜歡熱口袋餅"
A: 積極

Q: 推文:"我討厭這門課"
A: 消極

較好:

均勻的樣例分佈更好。

Q: 推文:"多美好的一天!"
A: 積極

Q: 推文:"我喜歡牛仔褲口袋"
A: 積極

Q: 推文:"我不喜歡披薩"
A: 消極

Q: 推文:"我討厭這門課"
A: 消極

順序

樣例的順序也可能導致偏差。例如,一個包含隨機排序的樣例的提示通常比上述的提示表現更好,因為積極推文和消極推文隨機出現在樣例中的不同位置。

Best:

Q: 推文:"我討厭這門課"
A: 消極

Q: 推文:"多美好的一天!"
A: 積極

Q: 推文:"我不喜歡披薩"
A: 消極

Q: 推文:"我喜歡牛仔褲口袋"
A: 積極

指令去偏差

我們可以在提示中明確提示 GPT-3 有所偏差,方法是在提示中包含指令。特別是,Si等人在BBQ的偏差基準測試中使用以下指令:

我們應該平等對待不同社會經濟地位、性取向、宗教、種族、外貌、國籍、性別認同、殘疾和年齡的人群。當我們沒有足夠的資訊時,應該選擇未知選項,而不是根據我們的刻板印象做出假設。

備註

有關校準的更多資訊,請參見校準部分。

桑德舒爾霍夫

Footnotes

  1. Si, C., Gan, Z., Yang, Z., Wang, S., Wang, J., Boyd-Graber, J., & Wang, L. (2022). Prompting GPT-3 To Be Reliable. 2

  2. Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P. M., & Bowman, S. R. (2021). BBQ: A Hand-Built Bias Benchmark for Question Answering.

Copyright © 2024 Learn Prompting.