提示工程指南
😃 基礎
💼 基礎應用
🧙‍♂️ 進階
🤖 代理商
⚖️ 可靠性
🖼️ 圖像提示詞
🔓 提示駭客攻擊
🔨 工具
💪 提示微調
🎲 雜項
📙 Vocabulary Reference
📚 Bibliography
📦 Prompted Products
🛸 Additional Resources
🔥 Hot Topics
✨ Credits
⚖️ 可靠性🟢 介紹

介紹

🟢 This article is rated easy
Reading Time: 1 minute

Last updated on August 7, 2024

本章介紹如何使 LLM 產生的結果更加可靠,以及如何透過檢查來確保 LLM 產生結果的可靠性。

在一定程度上,前面介紹的大部分技術都與提高補全準確度及可靠性有關,特別是自我一致性。然而,除了基本提示策略之外,還有許多其他技術可以用於提高可靠性。

LLMs 存在各種問題,包括幻覺、採用 CoT 方法的錯誤解釋,以及多種偏差,包括多數標籤偏差、近期偏差和常見令牌偏差。此外,在處理敏感話題時,zero-shot 思維鏈可能會產生特別的偏差

一些常見的解決方案包括使用校準器消除先驗偏差,使用驗證器對補全結果進行評分,以及在補全結果中增進多樣性。

桑德舒爾霍夫

校準大語言模型

🟢 提示去偏差法

🟦 提示多樣性

🟦 提示集成

🟦 大語言模型自我評估

🟦 數學演算

Footnotes

  1. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D. (2022). Self-Consistency Improves Chain of Thought Reasoning in Language Models.

  2. Ye, X., & Durrett, G. (2022). The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning. 2

  3. Zhao, T. Z., Wallace, E., Feng, S., Klein, D., & Singh, S. (2021). Calibrate Before Use: Improving Few-Shot Performance of Language Models.

  4. Shaikh, O., Zhang, H., Held, W., Bernstein, M., & Yang, D. (2022). On Second Thought, Let’s Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning.

Copyright © 2024 Learn Prompting.