Bienvenue
😃 Bases
💼 Applications de base
🧙‍♂️ Intermédiaire
🤖 Agents
⚖️ Fiabilité
🖼️ Prompting d'images
🔓 Hacking de prompts
🔨 Outillage
💪 Calibrage de prompts
🎲 Divers
📙 Référence de vocabulaire
📚 Bibliographie
📦 Prompted Products
🛸 Ressources supplémentaires
🔥 Sujets Brûlants
✨ Générique

Référence de vocabulaire

📙 This article is rated
Reading Time: 4 minutes

Last updated on August 7, 2024

Veuillez vous référer à cette page pour une liste de termes et de concepts que nous utiliserons tout au long de ce cours.

Les grands modèles de langue (LLMs), les modèles de langue pré-entraînés (PLMs), les modèles de langue (LMs) et les modèles fondamentaux

Ces termes font tous plus ou moins référence à la même chose : de grandes intelligences artificielles (réseaux neuronaux), qui ont généralement été entraînées sur une énorme quantité de texte.

Les modèles de langage masqués (MLMs)

Les MLMs sont un type de modèle NLP, qui ont un jeton ("token") spécial, généralement [MASK], qui est remplacé par un mot du vocabulaire. Le modèle prédit alors le mot qui a été masqué. Par exemple, si la phrase est "Le chien [MASK] le chat", le modèle prédit "chasse" avec une forte probabilité.

Les étiquettes ("labels")

Le concept d'étiquettes est mieux compris avec un exemple.

Supposons que nous voulions classifier certains tweets comme méchants ou non méchants. Si nous avons une liste de tweets et leur étiquette correspondante (méchants ou non méchants), nous pouvons entraîner un modèle à classer si les tweets sont méchants ou non. Les étiquettes ne sont généralement que des possibilités pour la tâche de classification.

L'espace d'étiquettes

Toutes les étiquettes possibles pour une tâche donnée ('méchants' et 'non méchants' pour l'exemple ci-dessus).

L'analyse de sentiment

L'analyse de sentiment est la tâche de classer le texte en sentiments positifs, négatifs ou autres.

"Modèle" vs "AI" vs "LLM"

Ces termes sont utilisés de manière quelque peu interchangeable tout au long de ce cours, mais ils ne signifient pas toujours la même chose. Les LLM sont un type d'IA, comme mentionné ci-dessus, mais toutes les IA ne sont pas des LLM. Lorsque nous mentionnons des modèles dans ce cours, nous faisons référence à des modèles d'IA. En tant que tel, dans ce cours, vous pouvez considérer les termes "modèle" et "IA" comme interchangeables.

L'apprentissage automatique (ML, machine learning)

Le ML est un domaine d'étude qui se concentre sur les algorithmes capables d'apprendre à partir de données. Le ML est une sous-catégorie de l'IA.

Le verbaliseur ("Verbalizer")

Dans le cadre de la classification, les verbaliseurs sont des mappages des étiquettes aux mots du vocabulaire d'un modèle de langage. Par exemple, considérez la classification de sentiment avec le prompt suivant:

Tweet: "J'aime les hotpockets"
Quel est le sentiment de ce tweet ? Dites 'pos' ou 'neg'.

Ici, le verbaliseur est le mappage des étiquettes conceptuelles de positif et négatif aux jetons pos et neg.

L'apprentissage par renforcement à partir des commentaires humains (RLHF, Reinforcement Learning from Human Feedback)

Le RLHF est une méthode de fine-tuning des LLMs selon les données de préférence humaine.

Sander Schulhoff

Sander Schulhoff is the Founder of Learn Prompting and an ML Researcher at the University of Maryland. He created the first open-source Prompt Engineering guide, reaching 3M+ people and teaching them to use tools like ChatGPT. Sander also led a team behind Prompt Report, the most comprehensive study of prompting ever done, co-authored with researchers from the University of Maryland, OpenAI, Microsoft, Google, Princeton, Stanford, and other leading institutions. This 76-page survey analyzed 1,500+ academic papers and covered 200+ prompting techniques.

Footnotes

  1. Branch, H. J., Cefalu, J. R., McHugh, J., Hujer, L., Bahl, A., del Castillo Iglesias, D., Heichman, R., & Darwishi, R. (2022). Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples.

  2. Schick, T., & Schütze, H. (2020). Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference. 2

  3. Brown, T. B. (2020). Language models are few-shot learners. arXiv Preprint arXiv:2005.14165. 2 3

  4. Wu, T., Terry, M., & Cai, C. J. (2022). Ai chains: Transparent and controllable human-ai interaction by chaining large language model prompts. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 1–22.

  5. Schulhoff, S., Ilie, M., Balepur, N., Kahadze, K., Liu, A., Si, C., Li, Y., Gupta, A., Han, H., Schulhoff, S., & others. (2024). The Prompt Report: A Systematic Survey of Prompting Techniques. arXiv Preprint arXiv:2406.06608. 2 3 4 5 6

  6. Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., & Singh, S. (2020). Autoprompt: Eliciting knowledge from language models with automatically generated prompts. arXiv Preprint arXiv:2010.15980.

  7. Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large Language Models are Zero-Shot Reasoners.

  8. Yasunaga, M., Chen, X., Li, Y., Pasupat, P., Leskovec, J., Liang, P., Chi, E. H., & Zhou, D. (2023). Large language models as analogical reasoners. arXiv Preprint arXiv:2310.01714.

  9. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., & others. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.

  10. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou, D. (2022). Chain of Thought Prompting Elicits Reasoning in Large Language Models.

  11. Yew Ken Chia. (2023). Contrastive Chain-of-Thought Prompting. In arXiv preprint arXiv:1907.11692. 2

  12. Tushar Khot. (2023). Decomposed Prompting: A Modular Approach for Solving Complex Tasks.

  13. Li, C., Wang, J., Zhang, Y., Zhu, K., Hou, W., Lian, J., Luo, F., Yang, Q., & Xie, X. (2023). Large language models understand and can be enhanced by emotional stimuli. arXiv Preprint arXiv:2307.11760.

  14. Fu, Y., Peng, H., Sabharwal, A., Clark, P., & Khot, T. (2022). Complexity-based prompting for multi-step reasoning. The Eleventh International Conference on Learning Representations.

  15. Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., & Chi, E. (2022). Least-to-Most Prompting Enables Complex Reasoning in Large Language Models.

  16. Lei Wang. (2023). Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models.

  17. Zheng, M., Pei, J., & Jurgens, D. (2023). Is “A Helpful Assistant” the Best Role for Large Language Models? A Systematic Evaluation of Social Roles in System Prompts. https://arxiv.org/abs/2311.10054

  18. Zheng, H. S., Mishra, S., Chen, X., Cheng, H.-T., Chi, E. H., Le, Q. V., & Zhou, D. (2023). Take a step back: Evoking reasoning via abstraction in large language models. arXiv Preprint arXiv:2310.06117.

  19. Lu, A., Zhang, H., Zhang, Y., Wang, X., & Yang, D. (2023). Bounding the capabilities of large language models in open text generation with prompt constraints. arXiv Preprint arXiv:2302.09185.

  20. Zhou, Y., Geng, X., Shen, T., Tao, C., Long, G., Lou, J.-G., & Shen, J. (2023). Thread of thought unraveling chaotic contexts. arXiv Preprint arXiv:2311.08734.

  21. Liu, J., Liu, A., Lu, X., Welleck, S., West, P., Bras, R. L., Choi, Y., & Hajishirzi, H. (2021). Generated Knowledge Prompting for Commonsense Reasoning.

  22. Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 594–611.

  23. Wang, Y., Yao, Q., Kwok, J. T., & Ni, L. M. (2020). Generalizing from a few examples: A survey on few-shot learning. ACM Computing Surveys (Csur), 53(3), 1–34.

  24. Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., Callan, J., & Neubig, G. (2023). Pal: Program-aided language models. International Conference on Machine Learning, 10764–10799.

  25. Schmidt, D. C., Spencer-Smith, J., Fu, Q., & White, J. (2023). Cataloging prompt patterns to enhance the discipline of prompt engineering. URL: Https://Www. Dre. Vanderbilt. Edu/Undefined̃ Schmidt/PDF/ADA_Europe_Position_Paper. Pdf [Accessed 2023-09-25].

  26. Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., & Ji, H. (2024). Unleashing the Emergent Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration. https://arxiv.org/abs/2307.05300

  27. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D. (2022). Self-Consistency Improves Chain of Thought Reasoning in Language Models.

  28. Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., & Chen, W. (2022). What Makes Good In-Context Examples for GPT-3? Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures. https://doi.org/10.18653/v1/2022.deelio-1.10

Copyright © 2024 Learn Prompting.