Aller au contenu principal

📚 Bibliographie

La page contient une liste organisée de tous les articles utilisés dans ce cours. Les articles sont organisés par thÚme.

Pour citer ce cours, utilisez la citation fournie dans le dépÎt Github.

đŸ”” = Article citĂ© directement dans ce cours. Les autres articles ont informĂ© ma comprĂ©hension du sujet.

Remarque: Étant donnĂ© que ni l'article sur le GPT-3 ni GPT-3 Instruct ne correspondent aux modĂšles davinci, j'essaie de ne pas les citer en tant que tels. French:

StratĂ©gies de Prompt Engineering​

Chain of Thought1 đŸ””â€‹

Chain of Thought utilisant Zero Shot2 đŸ””â€‹

Auto-consistance3 đŸ””â€‹

Qu'est-ce qui fait de bons exemples en contexte pour GPT-3?4 đŸ””â€‹

Prompting Demande-moi-quoi5 đŸ””â€‹

Connaissance gĂ©nĂ©rĂ©e6 đŸ””â€‹

ModĂšles de langage augmentĂ©s par rĂ©citation7 đŸ””â€‹

Repenser le rĂŽle des dĂ©monstrations8 đŸ””â€‹

Bloc-notes9​

Prompting Maieutique10​

STaR11​

Du plus petit au plus grand12 đŸ””â€‹

Reformulation des prompts d'enseignement en langage de GPTk13 đŸ””â€‹

Le test de Turking: les modĂšles de langage peuvent-ils comprendre les instructions?14 đŸ””â€‹

Fiabilité​

MathPrompter15 đŸ””â€‹

L'irrĂ©gularitĂ© des explications dans Few-shot Prompting pour le raisonnement textuel16 đŸ””â€‹

Prompting de GPT-3 Ă  ĂȘtre fiable17​

Prompts DiversifiĂ©s18 đŸ””â€‹

Calibrer avant l'utilisation : amĂ©liorer les performances Few-Shot des modĂšles de langage19 đŸ””â€‹

Auto-Consistance AmĂ©liorĂ©e20​

Biais et ToxicitĂ© dans Zero-Shot CoT21 đŸ””â€‹

IA Constitutionnelle: InoffensivitĂ© grĂące Ă  la rĂ©troaction de l'IA22 đŸ””â€‹

GĂ©nĂ©ralisation Compositionnelle - SCAN23​

Prompt Engineering Automatique​

AutoPrompt24 đŸ””â€‹

Automatic Prompt Engineer25​

Modùles​

Modùles de Langage​

GPT-326 đŸ””â€‹

GPT-3 Instruct27 đŸ””â€‹

PaLM28 đŸ””â€‹

BLOOM29 đŸ””â€‹

BLOOM+1 (plus de langues / amĂ©liorations Zero-Shot)30​

Jurassic 131 đŸ””â€‹

GPT-J-6B32​

Roberta33​

Modùles d'Images​

Stable Diffusion34 đŸ””â€‹

DALLE35 đŸ””â€‹

Soft Prompting​

Soft Prompting36 đŸ””â€‹

Soft Prompts discrĂ©tisĂ©s interprĂ©tables37 đŸ””â€‹

Ensembles de donnĂ©es​

MultiArith38 đŸ””â€‹

GSM8K39 đŸ””â€‹

HotPotQA40 đŸ””â€‹

Fever41 đŸ””â€‹

BBQ: Un banc d'essai de biais construit Ă  la main pour les questions-rĂ©ponses42 đŸ””â€‹

Prompt Engineering d'images​

Taxonomie des modificateurs de prompt43​

DiffusionDB44​

Le livre de prompt DALLE 245 đŸ””â€‹

Prompt Engineering pour l'art gĂ©nĂ©ratif basĂ© sur le texte46 đŸ””â€‹

Avec le bon prompt, Stable Diffusion 2.0 peut dessiner des mains.47 đŸ””â€‹

Optimisation de prompts pour la gĂ©nĂ©ration texte-image48​

IDEs de Prompt Engineering​

Prompt IDE49 đŸ””â€‹

Prompt Source50 đŸ””â€‹

PromptChainer51 đŸ””â€‹

PromptMaker52 đŸ””â€‹

Outils​

LangChain53 đŸ””â€‹

TextBox 2.0 : une bibliothĂšque de gĂ©nĂ©ration de texte avec des modĂšles de langage prĂ©-entraĂźnĂ©s54 đŸ””â€‹

OpenPrompt : un cadre open-source pour l'apprentissage de prompts55 đŸ””â€‹

GPT Index56 đŸ””â€‹

Prompt Engineering appliqué​

Cascades de modùles de langage57​

MRKL58 đŸ””â€‹

ReAct59 đŸ””â€‹

PAL : modĂšles de langage assistĂ©s par programme60 đŸ””â€‹

Conception d'interface utilisateur​

Directives de conception pour le Prompt Engineering pour la gĂ©nĂ©ration de texte en image61​

Injection de prompts (Prompt Injection)​

Texte gĂ©nĂ©rĂ© par machine : une Ă©tude exhaustive des modĂšles de menace et des mĂ©thodes de dĂ©tection62 đŸ””â€‹

Évaluation de la susceptibilitĂ© des modĂšles de langage prĂ©-entraĂźnĂ©s Ă  l'aide d'exemples adversaires artisanaux63 đŸ””â€‹

Attaques d'injection de prompts contre GPT-364 đŸ””â€‹

Exploitation des prompts GPT-3 avec des entrĂ©es malveillantes qui ordonnent au modĂšle d'ignorer ses instructions prĂ©cĂ©dentes65 đŸ””â€‹

prompts adversaires66 đŸ””â€‹

DĂ©fenses contre l'injection de prompts GPT-367 đŸ””â€‹

Parler aux machines : prompt engineering et prompt injection68​

Exploration des attaques d'injection de prompts69 đŸ””â€‹

Utilisation de GPT-Eliezer contre le jailbreak de ChatGPT70 đŸ””â€‹

Prompt de discussion Bing de Microsoft71​

Jailbreaking​

Ignorer le Prompt PrĂ©cĂ©dent : Techniques d'attaque pour les modĂšles de langage72​

Leçons apprises sur la sĂ©curitĂ© et l'utilisation abusive des modĂšles de langage73​

DĂ©tection de toxicitĂ© avec infĂ©rence gĂ©nĂ©rative basĂ©e sur les prompts74​

Outils de modĂ©ration de contenu nouveaux et amĂ©liorĂ©s75​

API OpenAI76 đŸ””â€‹

ChatGPT de OpenAI77 đŸ””â€‹

ChatGPT 4 Tweet78 đŸ””â€‹

Tweet d'acteur79 đŸ””â€‹

Tweet de recherche80 đŸ””â€‹

Tweet d'aptitude simulĂ©e81 đŸ””â€‹

Tweet de responsabilitĂ©82 đŸ””â€‹

Tweet Lynx Mode83 đŸ””â€‹

Tweet Sudo Mode84 đŸ””â€‹

Ignorer le prompt prĂ©cĂ©dent85 đŸ””â€‹

EnquĂȘtes​

PrĂ©-entraĂźnement, prompting et prĂ©diction: Une enquĂȘte systĂ©matique sur les mĂ©thodes de prompting en traitement du langage naturel86​

PromptPapers87​

GĂ©nĂ©ration de donnĂ©es​

DĂ©couvrir les comportements des modĂšles de langage avec des Ă©valuations Ă©crites par le modĂšle88​

L'annotation sĂ©lective amĂ©liore les capacitĂ©s d'apprentissage Few-Shot (en quelques exemples) des modĂšles de langage89​

Applications​

Atlas: Few-shot (apprentissage en quelques exemples) avec des modĂšles de langage augmentĂ©s par la recherche90​

STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension (RĂ©sumĂ© structurĂ© de dialogue pour la comprĂ©hension de dialogue)91​

Divers​

Le prompting est la programmation: Un langage de requĂȘte pour les grands modĂšles de langage92​

Les fenĂȘtres contextuelles parallĂšles amĂ©liorent l'apprentissage en contexte des grands modĂšles de langage93​

Catalogue de motifs de prompt pour amĂ©liorer le Prompt Engineering avec ChatGPT94 đŸ””â€‹

Apprendre à effectuer des tñches complexes par un fine-tuning compositionnel des modùles de langage95​

Super-NaturalInstructions: gĂ©nĂ©ralisation via des instructions dĂ©claratives sur plus de 1600 tĂąches NLP96​

AmĂ©liorer les capacitĂ©s Few-shot (d'apprentissage en quelques exemples) des modĂšles de langage prĂ©-entraĂźnĂ©s97​

Ancrage avec des rĂ©sultats de recherche98​

Comment prompter ? OpportunitĂ©s et dĂ©fis de Zero-Shot et Few-Shot pour l'interaction homme-machine en applications crĂ©atives de modĂšles gĂ©nĂ©ratifs99​

Mesure des biais sociaux dans l'apprentissage multi-tĂąches basĂ© sur le prompt100​

Écriture d'intrigues Ă  partir de modĂšles de langage prĂ©-entraĂźnĂ©s101 đŸ””â€‹

StereoSet : Mesure du biais stĂ©rĂ©otypĂ© dans les modĂšles de langage prĂ©-entraĂźnĂ©s102​

EnquĂȘte sur l'hallucination dans la gĂ©nĂ©ration de langage naturel103​

Exemples4​

Wordcraft104​

PainPoints105​

Self-Instruct: Aligner les modĂšles de langage avec des instructions auto-gĂ©nĂ©rĂ©es106​

Des images aux prompts textuels : VQA en zĂ©ro-shot avec des grands modĂšles de langage figĂ©s107​

Exploitation des questions Cloze pour la classification de texte en Few-Shot et l'infĂ©rence de langage naturel108​

Prompting Ask-Me-Anything5​

Un filigrane pour les grands modùles de langage109​


  1. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou, D. (2022). Chain of Thought Prompting Elicits Reasoning in Large Language Models. ↩
  2. Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large Language Models are Zero-Shot Reasoners. ↩
  3. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D. (2022). Self-Consistency Improves Chain of Thought Reasoning in Language Models. ↩
  4. Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., & Chen, W. (2022). What Makes Good In-Context Examples for GPT-3? Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures. https://doi.org/10.18653/v1/2022.deelio-1.10 ↩
  5. Arora, S., Narayan, A., Chen, M. F., Orr, L., Guha, N., Bhatia, K., Chami, I., Sala, F., & RĂ©, C. (2022). Ask Me Anything: A simple strategy for prompting language models. ↩
  6. Liu, J., Liu, A., Lu, X., Welleck, S., West, P., Bras, R. L., Choi, Y., & Hajishirzi, H. (2021). Generated Knowledge Prompting for Commonsense Reasoning. ↩
  7. Sun, Z., Wang, X., Tay, Y., Yang, Y., & Zhou, D. (2022). Recitation-Augmented Language Models. ↩
  8. Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., & Zettlemoyer, L. (2022). Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? ↩
  9. Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma, M., Luan, D., Sutton, C., & Odena, A. (2021). Show Your Work: Scratchpads for Intermediate Computation with Language Models. ↩
  10. Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Bras, R. L., & Choi, Y. (2022). Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations. ↩
  11. Zelikman, E., Wu, Y., Mu, J., & Goodman, N. D. (2022). STaR: Bootstrapping Reasoning With Reasoning. ↩
  12. Zhou, D., SchĂ€rli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., & Chi, E. (2022). Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. ↩
  13. Mishra, S., Khashabi, D., Baral, C., Choi, Y., & Hajishirzi, H. (2022). Reframing Instructional Prompts to GPTk’s Language. Findings of the Association for Computational Linguistics: ACL 2022. https://doi.org/10.18653/v1/2022.findings-acl.50 ↩
  14. Efrat, A., & Levy, O. (2020). The Turking Test: Can Language Models Understand Instructions? ↩
  15. Imani, S., Du, L., & Shrivastava, H. (2023). MathPrompter: Mathematical Reasoning using Large Language Models. ↩
  16. Ye, X., & Durrett, G. (2022). The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning. ↩
  17. Si, C., Gan, Z., Yang, Z., Wang, S., Wang, J., Boyd-Graber, J., & Wang, L. (2022). Prompting GPT-3 To Be Reliable. ↩
  18. Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., & Chen, W. (2022). On the Advance of Making Language Models Better Reasoners. ↩
  19. Zhao, T. Z., Wallace, E., Feng, S., Klein, D., & Singh, S. (2021). Calibrate Before Use: Improving Few-Shot Performance of Language Models. ↩
  20. Mitchell, E., Noh, J. J., Li, S., Armstrong, W. S., Agarwal, A., Liu, P., Finn, C., & Manning, C. D. (2022). Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference. ↩
  21. Shaikh, O., Zhang, H., Held, W., Bernstein, M., & Yang, D. (2022). On Second Thought, Let’s Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning. ↩
  22. Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKinnon, C., Chen, C., Olsson, C., Olah, C., Hernandez, D., Drain, D., Ganguli, D., Li, D., Tran-Johnson, E., Perez, E., 
 Kaplan, J. (2022). Constitutional AI: Harmlessness from AI Feedback. ↩
  23. Lake, B. M., & Baroni, M. (2018). Generalization without Systematicity: On the Compositional Skills of Sequence-to-Sequence Recurrent Networks. https://doi.org/10.48550/arXiv.1711.00350 ↩
  24. Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., & Singh, S. (2020). AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). https://doi.org/10.18653/v1/2020.emnlp-main.346 ↩
  25. Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., & Ba, J. (2022). Large Language Models Are Human-Level Prompt Engineers. ↩
  26. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., 
 Amodei, D. (2020). Language Models are Few-Shot Learners. ↩
  27. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback. ↩
  28. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., 
 Fiedel, N. (2022). PaLM: Scaling Language Modeling with Pathways. ↩
  29. Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., CastagnĂ©, R., Luccioni, A. S., Yvon, F., GallĂ©, M., Tow, J., Rush, A. M., Biderman, S., Webson, A., Ammanamanchi, P. S., Wang, T., Sagot, B., Muennighoff, N., del Moral, A. V., 
 Wolf, T. (2022). BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. ↩
  30. Yong, Z.-X., Schoelkopf, H., Muennighoff, N., Aji, A. F., Adelani, D. I., Almubarak, K., Bari, M. S., Sutawika, L., Kasai, J., Baruwa, A., Winata, G. I., Biderman, S., Radev, D., & Nikoulina, V. (2022). BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting. ↩
  31. Lieber, O., Sharir, O., Lentz, B., & Shoham, Y. (2021). Jurassic-1: Technical Details and Evaluation, White paper, AI21 Labs, 2021. URL: Https://Uploads-Ssl. Webflow. Com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_ Tech_paper. Pdf. ↩
  32. Wang, B., & Komatsuzaki, A. (2021). GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax. https://github.com/kingoflolz/mesh-transformer-jax ↩
  33. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv Preprint arXiv:1907.11692. ↩
  34. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2021). High-Resolution Image Synthesis with Latent Diffusion Models. ↩
  35. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents. ↩
  36. Lester, B., Al-Rfou, R., & Constant, N. (2021). The Power of Scale for Parameter-Efficient Prompt Tuning. ↩
  37. Khashabi, D., Lyu, S., Min, S., Qin, L., Richardson, K., Welleck, S., Hajishirzi, H., Khot, T., Sabharwal, A., Singh, S., & Choi, Y. (2021). Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts. ↩
  38. Roy, S., & Roth, D. (2015). Solving General Arithmetic Word Problems. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 1743–1752. https://doi.org/10.18653/v1/D15-1202 ↩
  39. Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., & Schulman, J. (2021). Training Verifiers to Solve Math Word Problems. ↩
  40. Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov, R., & Manning, C. D. (2018). HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering. ↩
  41. Thorne, J., Vlachos, A., Christodoulopoulos, C., & Mittal, A. (2018). FEVER: a large-scale dataset for Fact Extraction and VERification. ↩
  42. Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P. M., & Bowman, S. R. (2021). BBQ: A Hand-Built Bias Benchmark for Question Answering. ↩
  43. Oppenlaender, J. (2022). A Taxonomy of Prompt Modifiers for Text-To-Image Generation. ↩
  44. Wang, Z. J., Montoya, E., Munechika, D., Yang, H., Hoover, B., & Chau, D. H. (2022). DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models. ↩
  45. Parsons, G. (2022). The DALLE 2 Prompt Book. https://dallery.gallery/the-dalle-2-prompt-book/ ↩
  46. Oppenlaender, J. (2022). Prompt Engineering for Text-Based Generative Art. ↩
  47. Blake. (2022). With the right prompt, Stable Diffusion 2.0 can do hands. https://www.reddit.com/r/StableDiffusion/comments/z7salo/with_the_right_prompt_stable_diffusion_20_can_do/ ↩
  48. Hao, Y., Chi, Z., Dong, L., & Wei, F. (2022). Optimizing Prompts for Text-to-Image Generation. ↩
  49. Strobelt, H., Webson, A., Sanh, V., Hoover, B., Beyer, J., Pfister, H., & Rush, A. M. (2022). Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation with Large Language Models. arXiv. https://doi.org/10.48550/ARXIV.2208.07852 ↩
  50. Bach, S. H., Sanh, V., Yong, Z.-X., Webson, A., Raffel, C., Nayak, N. V., Sharma, A., Kim, T., Bari, M. S., Fevry, T., Alyafeai, Z., Dey, M., Santilli, A., Sun, Z., Ben-David, S., Xu, C., Chhablani, G., Wang, H., Fries, J. A., 
 Rush, A. M. (2022). PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts. ↩
  51. Wu, T., Jiang, E., Donsbach, A., Gray, J., Molina, A., Terry, M., & Cai, C. J. (2022). PromptChainer: Chaining Large Language Model Prompts through Visual Programming. ↩
  52. Jiang, E., Olson, K., Toh, E., Molina, A., Donsbach, A., Terry, M., & Cai, C. J. (2022). PromptMaker: Prompt-Based Prototyping with Large Language Models. Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3491101.3503564 ↩
  53. Chase, H. (2022). LangChain (0.0.66) [Computer software]. https://github.com/hwchase17/langchain ↩
  54. Tang, T., Junyi, L., Chen, Z., Hu, Y., Yu, Z., Dai, W., Dong, Z., Cheng, X., Wang, Y., Zhao, W., Nie, J., & Wen, J.-R. (2022). TextBox 2.0: A Text Generation Library with Pre-trained Language Models. ↩
  55. Ding, N., Hu, S., Zhao, W., Chen, Y., Liu, Z., Zheng, H.-T., & Sun, M. (2021). OpenPrompt: An Open-source Framework for Prompt-learning. arXiv Preprint arXiv:2111.01998. ↩
  56. Liu, J. (2022). GPT Index. https://doi.org/10.5281/zenodo.1234 ↩
  57. Dohan, D., Xu, W., Lewkowycz, A., Austin, J., Bieber, D., Lopes, R. G., Wu, Y., Michalewski, H., Saurous, R. A., Sohl-dickstein, J., Murphy, K., & Sutton, C. (2022). Language Model Cascades. ↩
  58. Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., & Tenenholtz, M. (2022). ↩
  59. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). ↩
  60. Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., Callan, J., & Neubig, G. (2022). ↩
  61. Liu, V., & Chilton, L. B. (2022). Design Guidelines for Prompt Engineering Text-to-Image Generative Models. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3491102.3501825 ↩
  62. Crothers, E., Japkowicz, N., & Viktor, H. (2022). Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods. ↩
  63. Branch, H. J., Cefalu, J. R., McHugh, J., Hujer, L., Bahl, A., del Castillo Iglesias, D., Heichman, R., & Darwishi, R. (2022). Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples. ↩
  64. Willison, S. (2022). Prompt injection attacks against GPT-3. https://simonwillison.net/2022/Sep/12/prompt-injection/ ↩
  65. Goodside, R. (2022). Exploiting GPT-3 prompts with malicious inputs that order the model to ignore its previous directions. https://twitter.com/goodside/status/1569128808308957185 ↩
  66. Chase, H. (2022). adversarial-prompts. https://github.com/hwchase17/adversarial-prompts ↩
  67. Goodside, R. (2022). GPT-3 Prompt Injection Defenses. https://twitter.com/goodside/status/1578278974526222336?s=20&t=3UMZB7ntYhwAk3QLpKMAbw ↩
  68. Mark, C. (2022). Talking to machines: prompt engineering & injection. https://artifact-research.com/artificial-intelligence/talking-to-machines-prompt-engineering-injection/ ↩
  69. Selvi, J. (2022). Exploring Prompt Injection Attacks. https://research.nccgroup.com/2022/12/05/exploring-prompt-injection-attacks/ ↩
  70. Stuart Armstrong, R. G. (2022). Using GPT-Eliezer against ChatGPT Jailbreaking. https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking ↩
  71. Liu, K. (2023). The entire prompt of Microsoft Bing Chat?! (Hi, Sydney.). https://twitter.com/kliu128/status/1623472922374574080 ↩
  72. Perez, F., & Ribeiro, I. (2022). Ignore Previous Prompt: Attack Techniques For Language Models. arXiv. https://doi.org/10.48550/ARXIV.2211.09527 ↩
  73. Brundage, M. (2022). Lessons learned on Language Model Safety and misuse. In OpenAI. OpenAI. https://openai.com/blog/language-model-safety-and-misuse/ ↩
  74. Wang, Y.-S., & Chang, Y. (2022). Toxicity Detection with Generative Prompt-based Inference. arXiv. https://doi.org/10.48550/ARXIV.2205.12390 ↩
  75. Markov, T. (2022). New and improved content moderation tooling. In OpenAI. OpenAI. https://openai.com/blog/new-and-improved-content-moderation-tooling/ ↩
  76. OpenAI. (2022). https://beta.openai.com/docs/guides/moderation ↩
  77. OpenAI. (2022). https://openai.com/blog/chatgpt/ ↩
  78. Maz, A. (2022). ok I saw a few people jailbreaking safeguards openai put on chatgpt so I had to give it a shot myself. https://twitter.com/alicemazzy/status/1598288519301976064 ↩
  79. Piedrafita, M. (2022). Bypass @OpenAI’s ChatGPT alignment efforts with this one weird trick. https://twitter.com/m1guelpf/status/1598203861294252033 ↩
  80. Parfait, D. (2022). ChatGPT jailbreaking itself. https://twitter.com/haus_cole/status/1598541468058390534 ↩
  81. Soares, N. (2022). Using “pretend” on #ChatGPT can do some wild stuff. You can kind of get some insight on the future, alternative universe. https://twitter.com/NeroSoares/status/1608527467265904643 ↩
  82. Moran, N. (2022). I kinda like this one even more! https://twitter.com/NickEMoran/status/1598101579626057728 ↩
  83. Degrave, J. (2022). Building A Virtual Machine inside ChatGPT. Engraved. https://www.engraved.blog/building-a-virtual-machine-inside/ ↩
  84. Sudo. (2022). https://www.sudo.ws/ ↩
  85. Perez, F., & Ribeiro, I. (2022). Ignore Previous Prompt: Attack Techniques For Language Models. arXiv. https://doi.org/10.48550/ARXIV.2211.09527 ↩
  86. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2022). Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Computing Surveys. https://doi.org/10.1145/3560815 ↩
  87. Ding, N., & Hu, S. (2022). PromptPapers. https://github.com/thunlp/PromptPapers ↩
  88. Perez, E., Ringer, S., LukoĆĄiĆ«tė, K., Nguyen, K., Chen, E., Heiner, S., Pettit, C., Olsson, C., Kundu, S., Kadavath, S., Jones, A., Chen, A., Mann, B., Israel, B., Seethor, B., McKinnon, C., Olah, C., Yan, D., Amodei, D., 
 Kaplan, J. (2022). Discovering Language Model Behaviors with Model-Written Evaluations. ↩
  89. Su, H., Kasai, J., Wu, C. H., Shi, W., Wang, T., Xin, J., Zhang, R., Ostendorf, M., Zettlemoyer, L., Smith, N. A., & Yu, T. (2022). Selective Annotation Makes Language Models Better Few-Shot Learners. ↩
  90. Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni, F., Schick, T., Dwivedi-Yu, J., Joulin, A., Riedel, S., & Grave, E. (2022). Atlas: Few-shot Learning with Retrieval Augmented Language Models. ↩
  91. Wang, B., Feng, C., Nair, A., Mao, M., Desai, J., Celikyilmaz, A., Li, H., Mehdad, Y., & Radev, D. (2022). STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension. ↩
  92. Beurer-Kellner, L., Fischer, M., & Vechev, M. (2022). Prompting Is Programming: A Query Language For Large Language Models. ↩
  93. Ratner, N., Levine, Y., Belinkov, Y., Ram, O., Abend, O., Karpas, E., Shashua, A., Leyton-Brown, K., & Shoham, Y. (2022). Parallel Context Windows Improve In-Context Learning of Large Language Models. ↩
  94. White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C. (2023). A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT. ↩
  95. Bursztyn, V. S., Demeter, D., Downey, D., & Birnbaum, L. (2022). Learning to Perform Complex Tasks through Compositional Fine-Tuning of Language Models. ↩
  96. Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y., Mirzaei, A., Arunkumar, A., Ashok, A., Dhanasekaran, A. S., Naik, A., Stap, D., Pathak, E., Karamanolakis, G., Lai, H. G., Purohit, I., Mondal, I., Anderson, J., Kuznia, K., Doshi, K., Patel, M., 
 Khashabi, D. (2022). Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks. ↩
  97. Gao, T., Fisch, A., & Chen, D. (2021). Making Pre-trained Language Models Better Few-shot Learners. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). https://doi.org/10.18653/v1/2021.acl-long.295 ↩
  98. LiĂ©vin, V., Hother, C. E., & Winther, O. (2022). Can large language models reason about medical questions? ↩
  99. Dang, H., Mecke, L., Lehmann, F., Goller, S., & Buschek, D. (2022). How to Prompt? Opportunities and Challenges of Zero- and Few-Shot Learning for Human-AI Interaction in Creative Applications of Generative Models. ↩
  100. AkyĂŒrek, A. F., Paik, S., Kocyigit, M. Y., Akbiyik, S., Runyun, ƞ. L., & Wijaya, D. (2022). On Measuring Social Biases in Prompt-Based Multi-Task Learning. ↩
  101. Jin, Y., Kadam, V., & Wanvarie, D. (2022). Plot Writing From Pre-Trained Language Models. ↩
  102. Nadeem, M., Bethke, A., & Reddy, S. (2021). StereoSet: Measuring stereotypical bias in pretrained language models. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 5356–5371. https://doi.org/10.18653/v1/2021.acl-long.416 ↩
  103. Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A., & Fung, P. (2022). Survey of Hallucination in Natural Language Generation. ACM Computing Surveys. https://doi.org/10.1145/3571730 ↩
  104. Yuan, A., Coenen, A., Reif, E., & Ippolito, D. (2022). Wordcraft: Story Writing With Large Language Models. 27th International Conference on Intelligent User Interfaces, 841–852. ↩
  105. Fadnavis, S., Dhurandhar, A., Norel, R., Reinen, J. M., Agurto, C., Secchettin, E., Schweiger, V., Perini, G., & Cecchi, G. (2022). PainPoints: A Framework for Language-based Detection of Chronic Pain and Expert-Collaborative Text-Summarization. arXiv Preprint arXiv:2209.09814. ↩
  106. Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., & Hajishirzi, H. (2022). Self-Instruct: Aligning Language Model with Self Generated Instructions. ↩
  107. Guo, J., Li, J., Li, D., Tiong, A. M. H., Li, B., Tao, D., & Hoi, S. C. H. (2022). From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models. ↩
  108. Schick, T., & SchĂŒtze, H. (2020). Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference. ↩
  109. Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I., & Goldstein, T. (2023). A Watermark for Large Language Models. https://arxiv.org/abs/2301.10226 ↩