Compete in HackAPrompt 2.0, the world's largest AI Red-Teaming competition!

Check it out โ†’
Prompt Engineering Guide
๐Ÿ˜ƒ Basics
๐Ÿ’ผ Applications
๐Ÿง™โ€โ™‚๏ธ Intermediate
๐Ÿค– ะะณะตะฝั‚ั‹
โš–๏ธ Reliability
๐Ÿ–ผ๏ธ Image Prompting
๐Ÿ”“ Prompt Hacking
๐Ÿ”จ Tooling
๐Ÿ’ช Prompt Tuning
๐ŸŽฒ Miscellaneous
๐Ÿ“š Bibliography
Resources
๐Ÿ“ฆ Prompted Products
๐Ÿ›ธ Additional Resources
๐Ÿ”ฅ Hot Topics
โœจ Credits
๐Ÿ”“ Prompt Hacking๐ŸŸข Defensive Measures๐ŸŸข Introduction

Introduction

๐ŸŸข This article is rated easy
Reading Time: 1 minute
Last updated on August 7, 2024

Sander Schulhoff

Preventing prompt injection can be extremely difficult, and there exist few robust defenses against it. However, there are some commonsense solutions. For example, if your application does not need to output free-form text, do not allow such outputs. There are many different ways to defend a prompt. We will discuss some of the most common ones here.

This chapter covers additional commonsense strategies like filtering out words. It also covers prompt improvement strategies (instruction defense, post-prompting, different ways to enclose user input, and XML tagging). Finally, we discuss using an LLM to evaluate output and some more model specific approaches.

Sander Schulhoff

Sander Schulhoff is the CEO of HackAPrompt and Learn Prompting. He created the first Prompt Engineering guide on the internet, two months before ChatGPT was released, which has taught 3 million people how to prompt ChatGPT. He also partnered with OpenAI to run the first AI Red Teaming competition, HackAPrompt, which was 2x larger than the White House's subsequent AI Red Teaming competition. Today, HackAPrompt partners with the Frontier AI labs to produce research that makes their models more secure. Sander's background is in Natural Language Processing and deep reinforcement learning. He recently led the team behind The Prompt Report, the most comprehensive study of prompt engineering ever done. This 76-page survey, co-authored with OpenAI, Microsoft, Google, Princeton, Stanford, and other leading institutions, analyzed 1,500+ academic papers and covered 200+ prompting techniques.

๐ŸŸข Filtering

๐ŸŸข Instruction Defense

๐ŸŸข Separate LLM Evaluation

๐ŸŸข Other Approaches

๐ŸŸข Post-Prompting

๐ŸŸข Random Sequence Enclosure

๐ŸŸข Sandwich Defense

๐ŸŸข XML Tagging

Footnotes

  1. Crothers, E., Japkowicz, N., & Viktor, H. (2022). Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods. โ†ฉ

  2. Goodside, R. (2022). GPT-3 Prompt Injection Defenses. https://twitter.com/goodside/status/1578278974526222336?s=20&t=3UMZB7ntYhwAk3QLpKMAbw โ†ฉ