介绍
本章介绍如何使补全结果更加可靠,以及如何通过检查来确保补全结果的可靠性。
在一定程度上,前面介绍的大部分技术都与提高补全准确度及可靠性有关,特别是自洽性。然而,除了基本提示策略之外,还有许多其他技术可以用于提高可靠性。
LLMs 存在各种问题,包括幻象、采用 CoT 方法的错误解释,以及多种偏差,包括多数标签偏差、近期偏差和常见令牌偏差。此外,在处理敏感话题时,zero-shot 思维链可能会产生特别的偏差。
一些常见的解决方案包括使用校准器消除先验偏差,使用验证器对补全结果进行评分,以及在补全结果中增进多样性。
校准大语言模型
🟢 提示去偏差
🟦 提示多样性
🟦 Prompt Ensembling
🟦 大语言模型自我评估
🟦 Math
Footnotes
-
Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D. (2022). Self-Consistency Improves Chain of Thought Reasoning in Language Models. ↩
-
Ye, X., & Durrett, G. (2022). The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning. ↩ ↩2
-
Zhao, T. Z., Wallace, E., Feng, S., Klein, D., & Singh, S. (2021). Calibrate Before Use: Improving Few-Shot Performance of Language Models. ↩
-
Shaikh, O., Zhang, H., Held, W., Bernstein, M., & Yang, D. (2022). On Second Thought, Let’s Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning. ↩